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RATES OF CONVERGENCE IN ACTIVE LEARNING

By STEVE HANNEKE
Carnegie Mellon University

We study the rates of convergence in generalization error achievable by
active learning under various types of label noise. Additionally, we stiuely
general problem of model selection for active learning with a nestedrtey
of hypothesis classes, and propose an algorithm whose error ratbfyro
converges to the best achievable error among classifiers in the higrarc
a rate adaptive to both the complexity of the optimal classifier and the noise
conditions. In particular, we state sufficient conditions for these rates to b
dramatically faster than those achievable by passive learning.

1. Introduction. Active learningrefers to a family of powerful supervised
learning protocols capable of producing more accurate classifiers wdiilg a
smaller number of labeled data points than traditional (passive) learning dsetho
Here we study a variant known asol-basedactive learning, in which a learning
algorithm is given access to a large pool of unlabeled data (i.e., only tlaeiates
are visible), and is allowed to sequentially request the label (respomisdoied
of any particular data points from that pool. The objective is to learn atifumc
that accurately predicts the labels of new points, while minimizing the number
of label requests. Thus, this is a type of sequential design scenaroffimiction
estimation problem. This contrasts with passive learning, where the labated da
are sampled at random. In comparison, by more carefully selecting whintspo
should be labeled, active learning can often significantly decrease thartaiant
of effort required for data annotation. This can be particularly intergstintasks
where unlabeled data are available in abundance, but label informatimesaanly
through significant effort or cost.

Recently, there have been a series of exciting advances on the topitivef ac
learning with arbitrary classification noise (the so-caigdosticPAC model R3)),
resulting in several new algorithms capable of achieving improved coeneeg
rates compared to passive learning under certain conditions. The fophged
by Balcan, Beygelzimer, and Langforé] was theA? (agnostic active) algorithm,
which provably never has significantly worse rates of convergenae fihasive
learning by empirical risk minimization. This algorithm was later analyzed in de-
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tail in [21], where it was found that a complexity measure calleddisagreement
coefficientcharacterizes the worst-case convergence rates achievéd foy any
given hypothesis class, data distribution, and best achievable eidn tae class.
The next major advance was by Dasgupta, Hsu, and Montelé&hiWyho pro-
posed a new algorithm, and proved that it improves the dependence afrrerc
gence rates on the disagreement coefficient compargd.t8oth algorithms are
defined below in SectioB. While all of these advances are encouraging, they are
limited in two ways. First, the convergence rates that have been provéinefee
algorithms typically only improve the dependence on the magnitude of the noise
(more precisely, the noise rate of the hypothesis class), compared teedassn-
ing. Thus, in an asymptotic sense, for nonzero noise rates these repudtsent at
best a constant factor improvement over passive learning. Secesd,rgsults are
limited to learning with a fixed hypothesis class of limited expressiveness, so tha
convergence to the Bayes error rate is not always a possibility.

On the first of these limitations, recent work by Castro and Now&kdn learn-
ing threshold classifiers discovered that if certain parameters of thedistsbu-
tion areknown(namely, parameters related to Tsybakov’s margin conditions), then
we can achieve strict improvements in the asymptotic convergence rate \@a a sp
cific active learning algorithm designed to take advantage of that knoel&xig
thresholds. Subsequently, Balcan, Broder, and Zh@hgrpved a similar result
for linear separators in higher dimensions, and Castro and Ndigkliowed re-
lated improvements for the space of boundary fragment classes (usoiereavhat
stronger assumption than Tsybakov’s). However, these works lefii thye question
of whether such improvements could be achieved by an algorithm that dbes-n
plicitly depend on the noise conditions (i.e., in thgnosticsetting), and whether
this type of improvement is achievable for more general families of hypothesis
classes, under the usual complexity restrictions (e.g., VC class, entogitions,
etc.). In a personal communication, John Langford and Rui Castro claitied
achieves these improvements for the special case of threshold clagsifigrs-
cial case of this also appeared Bj)[ However, there remained an open question
of whether such rate improvements could be generalized to hold for aytityar
pothesis classes. In Sectidnwe provide this generalization. We analyze the rates
achieved byA? under Tsybakov’s noise conditiond7, 29]; in particular, we find
that these rates are strictly superior to the known rates for passivénigawhen
the disagreement coefficient is finite. We also study a novel modificatiore@flth
gorithm of Dasgupta, Hsu, and Monteleoh$], proving that it improves upon the
rates ofA? in its dependence on the disagreement coefficient.

Additionally, in Sectiorb, we address the second limitation by proposing a gen-
eral model selection procedure for active learning with an arbitrarygtsire of
nested hypothesis classes. If the classes have restricted expressiye.g., VC
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classes), the error rate for this algorithm converges to the best abl@eraor by

any classifier in the structure, at a rate that adapts to the noise conditibosran
plexity of the optimal classifier. In general, if the structure is constructecttode
arbitrarily good approximations to any classifier, the error convergestBayes
error rate in the limit. In particular, if the Bayes optimal classifier is in some class
within the structure, the algorithm performs nearly as well as running aosagn
tic active learning algorithm on that single hypothesis class, thus pregeivn
convergence rate improvements achievable for that class.

2. Definitions and Notation. In the active learning setting, there is am
stance spacé’, alabel space)y = {—1,+1}, and some fixed distributio® xy
over X x ), with marginalDx over X'. The restriction to binary classification
(¥ ={-1,+1})is intended to simplify the discussion; however, everything below
generalizes quite naturally to multiclass classification (wbére {1,2,...,k}).

There are two sequences of random variablgs.Xs, . .. andYy, Ys, .. ., where
each(X;,Y;) pair is independent of the others, and has joint distribufiog, .
However, the learning algorithm is only permitted direct access tokxthealues
(unlabeled data points), and must requestthealues one at a time, sequentially.
Thatis, the algorithm picks some indeto observe thé’; value, then after observ-
ing it, picks another indeX to observe th&’; label value, etc. We are interested
in studying the rate of convergence of the error rate of the classifieubbip
the learning algorithm, in terms of the number of label requests it has made. To
simplify the discussion, we will think of the data sequence as being essentially
inexhaustible, and will studyl — ¢§)-confidence bounds on the error rate of the
classifier produced by an algorithm permitted to make at mdstbel requests,
for a fixed valued € (0,1/2). The actual number of (unlabeled) data points the
algorithm uses will be made clear in the proofs (typically close to the number of
points needed by passive learning to achieve the stated error guqrantee

A hypothesis clas€ is any set of measurable classifigrs X — ). We will
denote by the VC dimension of” [see e.g.12, 16, 31-33]. For any measurable
h : X — Y and distributiorD over X x ), define theerror rate of h aserp(h) =
Pxy)~p{h(X) # Y}, whenD = Dxy, we abbreviate this as'(h). This simply
represents the risk under tbel loss. We also define theonditional error rate
given aset? C X, aser(h|R) = P{h(X) # Y|X € R}. Letv = infpccer(h),
called thenoise rateof C. For anyz € X, letn(z) = P{Y = 1|X = z}, let
h*(z) = 21[n(x) > 1/2] — 1, and letv* = er(h*). We callh* the Bayes optimal
classifier andv* the Bayes error rate Additionally, define thediameterof any
set of classifierd” asdiam(V') = supy, p,ey P{h1(X) # ho(X)}, and for any
e > 0, define the diameter of theminimal setof V asdiam(e; V') = diam({h €
V :ier(h) —infpey er(h') < e}).
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For a classifierh, and a sequenc€ = {(z1,v1), (z2,%2),.--, (Tm,Ym)} €
(X x V)™, leterg(h) = ﬁZ(x,y)esﬂ[h(m) # y] denote theempirical er-
ror rate on S, (and defineeryy(h) = 0 by convention). It will often be con-
venient to make use of sets of (index, label) pairs, where the index istased
uniquely refer to an element of tHeX; } sequence (while conveniently also keep-
ing track of relative ordering information); in such contexts, we will ovadmo-
tation as follows. For a classifiér, and a finite set of (index, label) paifs =

{G191), (i2,92), -, (ims ym)} C N x Y, leters(h) = (_X):Es]l[h(Xz‘) # yl,
Y

(anderg; (h) = 0, as before). Thugys(h) =ers: (h), whereS'={(Xi, y) } i y)es-
For the indexedrue label sequencez(™ = {(1,Y1),(2,Y2),...,(m,Yn,)}, we
abbreviate thigr,,(h) = erzm) (h), the empirical error on the first data points.

In addition to the independent interest of understanding the rates doleieva
here, another primary interest in this setting is to quantify the achievalpi®ve-
ments compared tgassive learningin this context, a passive learning algorithm
can be formally defined as a function mapping the sequéqke, Y1), (X2, Y2),
..., (Xn, Yy)} to a classifierh,; for instance, perhaps the most widely studied
family of passive learning methods is that efpirical risk minimizatiorfe.g.,
24, 28, 31, 32], which return a classifieli,, € argminy,cc ery (h). For the purpose
of this comparison, we review known results on passive learning inaemntexts
below.

2.1. Tsybakov’s Noise ConditionsHere we describe a particular parametriza-
tion of noise distributions, relative to a hypothesis class, often referrad Tsy-
bakov’s noise conditions2]7, 29|, or margin conditions. These noise conditions
have recently received substantial attention in the passive learning litesrati
they describe situations in which the asymptotic minimax convergence rate-of pas
sive learning is faster than the worst casé/? rate [e.g.24, 27-29).

CONDITION 1. There exist finite constanjs > 0 andx > 1, s.t.Ve > 0,
diam(e; C) < ,ue%. o

This condition is satisfied when, for example,
' >0,k >1st.3he C:Vh' € Cer(h) — v > /'P{h(X) # K(X)}"
[24]. It is also satisfied when the Bayes optimal classifier i€ iand
" >0, € (0,00) s.t.Ve > 0, P{|n(X) — 1/2| < e} < p"e*,

wherer andp are functions oty and i [27, 29); in particular,x = (1 + a)/a.
As we will see, the case where = 1 is particularly interesting; for instance,
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this is the case wheh* € C andP{|n(X) — 1/2| > ¢} = 1 for some constant
c € (0,1/2). Informally, in many cases Conditidncan be realized in terms of the
relation between magnitude of noise and distance to the optimal decision Ibpunda
that s, since in practice the amount of noise in a data point’s label is ofterselye
related to the distance from the decision boundary, a smallue may often result
from having low density near the decision boundary (i.e., large margirgnwlis
is not the case, the value gis often determined by how quickhy(x) changes as
approaches the decision boundary. Seé3, 24, 27-29] for further interpretations
of this condition.

It is known that when this condition is satisfied for some> 1 andp > 0,
the passive learning method of empirical risk minimization achieves a comeage
rate guarantee, holding with probability 1 — §, of

(dlogn—l—log(l/é))?:—l

er(argminer,(h)) —v <e¢

heC n

wherec is a (< and i, -dependent) constant (this follows fror®4] 28]; see Ap-
pendix B, especially {7) and Lemmab, for the details). Furthermore, for some
hypothesis classes, this is known to be a tight bound (up to the log factdigeon
minimax convergence rate, so that theraaassive learning algorithm for these
classes for which we can guarantee a faster convergence rate tigatehe guar-
antee depends ddixy only throughu andx [13, 29| (see also Appendi).

2.2. Disagreement Coefficient.The disagreement coefficient, introduced in
[21], is a measure of the complexity of an active learning problem, which has
proven quite useful for analyzing the convergence rates of certa@gs typactive
learning algorithms: for example, the algorithms 6f 11, 14, 15]. Informally, it
guantifies how much disagreement there is among a set of classifierserétativ
how close to some they are. The following is a version of its definition, which
we will use extensively below.

For any hypothesis clagdandV C C, let

DIS(V) = {x eX: th,hg eV S.t.hl(l’) 7& hg(.%')}
Forr € [0,1] and measurable : X — Y, let
B(h,r) ={h' € C:P{h(X) # K (X)} <r}.

DEerFINITION 1. Thedisagreement coefficienf i with respect taC underDx

is defined as
By, = sup ]P’(DIS(B(h,r)))’
r>rg r

wherery = 0 (though see Appendix.1for alternative possibilities fory). o
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DerINITION 2. We further define the disagreement coefficient for the hypoth-
esis clas<C with respect to the target distributioRxy asé = liminfy_,o 0,
where{hl*!} is any sequence i@ with er(h¥1) monotonically decreasing tg (by

convention, take evey*! € argmin er(h) if the minimum is achieved). o
heC

In Definition1, it is conceivable thaD .S (B(h, r)) may sometimes not be mea-
surable. In such cases, we can defti®1.S(B(h,r))) as theoutermeasure3(],
so that it remains well defined. We continue this practice below, leRimgd E
(and indeed any reference to “probability”) refer to the outer expectaiial mea-
sure in any context for which this is necessary.

Because of its simple intuitive interpretation, measuring the amount of disagree
ment in a local neighborhood of some classifiethe disagreement coefficient has
the wonderful property of being relatively simple to calculate for a widegeaof
learning problems, especially when those problems have a natural georeptric
resentation. To illustrate this, we will go through a few simple examples f&din |

Consider the hypothesis class of threshdidson the intervall0, 1] (for z €
(0,1)), whereh.(z) = +1iff z > 2. Furthermore, supposBy is uniform on
[0, 1]. In this case, it is clear that the disagreement coefficient $$nce for suffi-
ciently smallr, the region of disagreement 8(h..,r) is [z — 7, z + r), which has
probability masgr. In other words, since the disagreement region grows miith
two disjoint directions, each at ratewe haved,,, = 2.

As a second example, consider the disagreement coefficiembtiwvals on
[0,1]. As before, letX = [0,1] andDx be uniform, but this timeC is the set
of intervals i, 5 such that forx € [0,1], higy(x) = +1iff = € [a,b] (for
0 < a < b < 1). In contrast to thresholds, the disagreement coefficiém§]
for the space of intervals vary widely depending on the partictijay. Specifi-
cally, we have9h[a,b] = max {ﬁ, 4}. To see this, note that whén< r < b — a,
every interval inB(hy, 4, r) has its lower and upper boundaries withiaf a andb,
respectively; thusP(DIS(B(hj,,7))) < 4r, with equality for sufficiently small
r. However, when > b — a, everyinterval of width< r — (b—a) isin B(h[a,b],r),
so thatP(DIS(B(hjap,7))) = 1.

As a slightly more involved example2]] studies the scenario wherg is the
surface of the origin-centered unit sphereRifs for d > 2, C is the space of all
linear separators whose decision surface passes through the anigjibxais the
uniform distribution onX’; in this case, it turns outh € C the disagreement

coefficientd,, satisfies
Z\/g <0, < m/d.

The disagreement coefficient has many interesting properties that f@atohe
bound its value for a given hypothesis class and distribution. We list altanen-
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tary properties below. Their proofs, which are quite short and folloeady from
the definition, are left as easy exercises.

LEMMA 1. [Close Marginals]21] Supposed\ € (0, 1] s.t. for any measur-
able setA C X, APp, (A) < Pp, (A) < {Ppy(A). Leth : X — Y bea

measurable classifier, and suppageandd;, are the disagreement coefficients for
h with respect taC underDx and Dy respectively. Then

Mg, < 6, < %ah. o

LEMMA 2. [Finite Mixtures] Supposéla € [0, 1] s.t. for any measurable set
ACX,Pp,(A) = aPp,(A) + (1 — a)Pp,(A). For a measurablé, : X — ),
let 0;1) be the disagreement coefficient with respecCtander Dy, 9,(12) be the
disagreement coefficient with respectGainderD-, andd;, be the disagreement
coefficient with respect t6 underDy. Then

o, <0 + 6. .

LeEmMMA 3. [Finite Unions] Supposé € C; N C, is a classifier s.t. the dis-

agreement coefficient with respect@ underDy is 9,(11) and with respect to

Cs underDy is 922). Then if#,, is the disagreement coefficient with respect to
C = C; U Cy underDx, we have that

max {03, 07 } <0, <0}V + 6,7,

In fact, even ifh ¢ C; N C,, we still haved;, < Hfll) + 922) + 2. o

See B, 11, 15, 17, 21, 35 for further discussions of various uses of the dis-
agreement coefficient and related notions and extensions in activenggdmpar-
ticular, Friedman 17] proves that any hypothesis class and distribution satisfying
certain general regularity conditions will admit finite constant bound§. @xiso,
Wang B5] bounds the disagreement coefficient for certain nonparametric hypoth
esis classes, characterized by smoothness of their decision suXddé@snally,
Beygelzimer, Dasgupta, and Langfortll] present an interesting analysis using a
natural extension of the disagreement coefficient to study active |lgawith a
larger family of loss functions beyorid1 loss.

The disagreement coefficient has deep connections to several otugitigs,
such as doubling dimensio24] and VC dimension31]. Additionally, a related
guantity, referred to as the “capacity function,” was studied in the 80ddwahder
in the passive learning literature, in the context of ratio-type empiricalgsms
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[2—4], and recently was further developed by &iand Koltchinskii L8]; interest-
ingly, in this latter work, Gig and Koltchinskii study a localized version of the
capacity function, which in our present context can essentially be viawdte
functiont(r) = P(DIS(B(h,r)))/r, so thatdy, = sup,...,., 7(r).

3. General Algorithms. We begin the discussion of the algorithms we will
analyze by noting the underlying inspiration that unifies them. Specificallyjsat th
writing, all of the published general-purpose agnostic active learnirgyitigns
achieving nontrivial improvements are derivatives of a basic techniqugoped
by Cohn, Atlas, and Ladneffl] for the realizable active learning problem. Under
the assumption that there exists a perfect classifi€r they proposed an algorithm
which processes unlabeled data points in sequence, and for eactdeteziihines
whether there is a classifier @ consistent with all previously observed labels that
predicts+1 for this new pointand one that predicts-1 for this new point; if so,
the algorithm requests the label, and otherwise it does not request thealidre
n label requests, the algorithm returns any classifier consistent with ahadubs
labels. In some sense, this algorithm corresponds to the very least Weezpect
of an active learning algorithm, as it never requests the label of a poant ilerive
from known information, but otherwise makes no effort to search farmétive
data points. The idea is appealing, not only for its simplicity, but also for its ex-
tremely efficient use of unlabeled data; in fact, under the stated assunipion,
algorithm produces a classifier consistent with the labelallobf the unlabeled
data it processes, including those it doesrequest the labels of.

We can equivalently think of this algorithm as maintaining two setsC C
is the set of candidate hypotheses still under considerationRardDIS (V) is
their region of disagreement. We can then think of the algorithm as requesting
random labeled point from the conditional distributiorZafy given thatX € R,
and subsequently removing froim any classifier inconsistent with the observed
label. A formal definition of the algorithm is given as follows.

Algorithm O
Input: hypothesi§ class, label budget:
Output: classifieh,, € C

0.Vo«—C,t<—0
1.Form=1,2,...

2. If X,, € DIS(V}),
3 Request’,

4. t—t+1

5. Ve {heVii:h(Xm) =Y}

6. Ift=nor{m >m:X, € DIS(V,)} =0, Return any, € V,
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The algorithms described below for the problem of active learning with label
noise each represent noise-robust variants of this basic idea. Tdr&taweduce
the set of candidate hypotheses, while only requesting the labels of poithis in
region of disagreement of these candidates. The trick is to only removssifiela
from the candidate set once we have high statistical confidence that itré® wo
than some other candidate classifier so that we never remove the besteclass
However, the two algorithms differ somewhat in the details of how that camfiele
is calculated.

3.1. Algorithm 1. The first noise-robust algorithm we study, originally pro-
posed by Balcan, Beygelzimer, and Langfo6d, [is typically referred to as4?
for Agnostic ActiveThis was historically the first general-purpose agnostic active
learning algorithm shown to achieve improved error guarantees folircégtan-
ing problems in certain ranges afandv. Below is a variant of this algorithm.
It is defined in terms of two functiong/ B and L B. These represent upper and
lower confidence bounds on the error rate of a classifier febmith respect to
an arbitrary sampling distribution, as a function of a labeled sequence shawle
cording to that distribution. Some steps in the algorithm require calculatingrcerta
probabilities, such aB(DI1S(V)) or P(R); later, we discuss replacing these with
appropriate estimators.

Algorithm 1
Input: hypothesis class, label budget:, confidence), functionsU B andL B
Output: classifieh,,

0.V—C,R< DIS(C),Q «—0,m+0
l.Fort=1,2,...,n
If P(DIS(V)) < LP(R)

R DIS(V); Q — 0

If P(R) < 27", Return anyh,, € V
m « min{m’ > m : X,y € R}

3
4
5.
6. Request), andletQ «— QU {(m,Yy,)}
7
8
9

n

V—{heV:LB(h,Q,0/n) < }Ilpeil‘}UB(h’,Q,é/n)}

hy < argmin UB(h, @, /n)
heV

10. Returm,, = h;, wheref = argmin
te{1,2,...,n}

The intuitive motivation behind the algorithm is the following. It focuses on re-
ducing the set of candidate hypothe$&swhile being careful not to throw away
the best classifieh: = argmin,ccer(h) (supposing, for this informal expla-
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nation, thathg. exists). Given that this is satisfied at any given time in the algo-
rithm, it makes sense to focus our samples to the re@id§ (1), since a clas-
sifier hy € V has smaller error rate than another classiliere V if and only
if it has smaller conditional error rate givelilS(V'). For this reason, on each
round, we seek to remove frofiri any h for which our confidence bounds indi-
cate thater(h|DIS(V)) > er(hg|DIS(V)). However, so that we can make use
of known results for i.i.d. samples, we freeze the sampling region DIS(V)
and collect an i.i.d. sample from the conditional given this region, updating the
region only when doing so allows us to further significantly focus the samples
for this same reason, we also reset the collection of samplesery time we
update the regiomR, so that it represents samples from the conditional gizen
Finally, we maintain the values;, which represent confidence upper bounds on
er(hy) — v = (er(ht|R) — er(hi|R))P(R), and we return thé,; minimizing this
confidence bound; note that it does not suffice to refysnsince the final) set
might be small.

As long as the confidence bound$3 and . B satisfy (overloading notation in
the natural way)

Py pm{Vh € C,LB(h, Z,8') < erp(h) < UB(h, Z,6")} > 1— ¢
for any distributionD over X x ) and anyd’ € (0, 1), andU B and L. B converge

to each other as: grows, it is known that a — & confidence bound o#v:(h,,) — v
converges td) [6]. For instance, Balcan, Beygelzimer, and Langfddfiquggest
defining these functions based on classic results on uniform convergates in

passive learningdl], such as

(l) UB(ha Q, 6/) = min{erQ(h) + G(|Q‘? 5/)7 1}7
LB(h,Q,¢") = max{erq(h) — G(|Ql, ), 0},

nd n 2em .
whereG(m, ') = L + % for m > d, and by conventio?(m, ¢') =
oo for m < d. This choice ofU B and LB is motivated by the following lemma,

due to Vapnik B2].

LEMMA 4. For any distributionD overX x ), and any’ € (0,1) andm € N,
with probability> 1 — ¢’ over the draw ofZ ~ D™, everyh € C satisfies

2 lerz(h) —erp(h)| < G(m, ).

O

To avoid computational issues, instead of explicitly representing thé/satsl
R, we may implicitly represent them as a set of constraints imposed by the condi-
tion in Step 7 of previous iterations. We may also repB¢BI1S(V)) andP(R)
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by estimates, since these quantities can be estimated to arbitrary precision with
arbitrarily high confidence using onlynlabeleddata. Specifically, the conver-
gence rates proven below can be preserved up to constant factoeplbaging
these quantities with confidence bounds depending on a finite number béleda
data points; for completeness, the details are given in App&hdhbs for the num-

ber of unlabeled data points required by the above algorithm itself, notéf that
P(DIS(V)) becomes small, it will use a large number of unlabeled data points;
however,P(DIS(V)) being small also indicates:(h,,) — v is small (and indeed

0G¢). In particular, to get an excess error ratecpthe algorithm will generally re-
quire a number of unlabeled data points only polynomial/iey also, the condition

in Step 4 guarantees the total number of unlabeled data points used by the algo
rithm is bounded with high probability. For comparison, recall that passaming
typically requires a number ¢ébeleddata points polynomial it /e.

3.2. Algorithm 2. The second noise-robust algorithm we study was originally
proposed by Dasgupta, Hsu, and Monteled] [ It uses a type of constrained
passive learning subroutinegkRN, defined as follows for two sets of labeled data
points,£ and(@.

LEARNc(L,Q) = argmin erg(h).
heC:erg(h)=0

By convention, if noh € C haser,(h) = 0, LEARNg(L, Q) = @. The algorithm
is formally defined below, in terms of a sequence of estimalgys defined later.

Algorithm 2
Input: hypothesis class, label budget:, confidence), functionsA,;,
Output: classifieh,,, sets of (index, label) pai§ and@

0.L~0,Q 0
1. Form=1,2,...
2. If|Q| =norm > 2", Returnh,, = LEARNc (L, Q) along with£ and@
3. Foreachy € {—1,+1},leth® = LEARNC(L U {(m,y)},Q)
4. If somey hash(~¥) = @ or
emUQ(h(’y)) _ eT’ch(h(y)) > Am_l(ﬁ,Q,h(y), h(fy)’(;)
5. Thenl — LU {(m,y)}
Else Request the lab¥}, and letQ) < Q U {(m,Y,,)}

o

The algorithm maintains two sets of labeled data poidtsind Q. The setQ)
represents points of which we have requested the labels. Thkrspresents the
remaining points, and the labels of pointsdrareinferred Specifically, suppose
(inductively) that at some time: we have that everyi,y) € £ hash{(X;) = v,
wherehy = argmin, ¢ er(h) (supposing the min is achieved, for this informal
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motivation). At any point, we can be fairly confident thigt will have relatively
small empirical error rate. Thus, if all of the classifiérwith er(h) = 0 and
h(X,,) = —y have relatively large empirical error rates compared to shwéh
erg(h) = 0andh(X,,) = y, we can confidently infer thai. (X,,) = y. Note that
this is not thetrue labelY;,,, but a sort of “denoised” version of it. Once we infer
this label, since we are already confident that this is/fthdabel, andhg is the
classifier we wish to compete with, we simply add this label asrsstraint that
is, we require every classifier under consideration in the future to h@g¥g,) =
h&(Xym). This is how elements of are added. On the other hand, if we cannot
confidently inferh{: (X, ), because some classifiers labeling opposite this also have
relatively small empirical error rates, then we simply request the laheblnd
add it to the set). Note that in order to make this comparison, we needed to be
able to calculate the differences of empirical error rates; howeverngsds we
only consider the set of classifieksthat agreeon the labels inC, we will have
ercug(hi) — erpug(he) = ery(hi) — ery(he), for any two such classifiers,
andhz, wherem = |[LU Q).

The key to the above argument is carefully choosing a threshold for hge la
the difference in empirical error rates needs to be before we can eatifidn-
fer the label. For this purpose, Algorithm 2 is defined in terms of a function,
An(L,Q,hW) h(=Y) §), representing a threshold for a type of hypothesis test.
This threshold must be set carefully, since the sequence of labeledaitatis qor-
responding taC U @ is not actually an i.i.d. sample frofxy-. Dasgupta, Hsu, and
Monteleoni [L5] suggest defining this function as

@) An(L.QH, K, 8) = 5+ B (feraug(h0) + \ercoo(h=0) ),

where 3, = \/4ln(8m(m+1n)1$((j,2m)2/5) and S(C, 2m) is the shatter coefficient
[e.g.,16, 32); this suggestion is based on a confidence bound they derive, and they
prove the correctness of the algorithm with this definition, meaning that the
confidence bound on its error rate convergesasn — oo. For now we will focus

on the first return value (the classifier), leaving the others for Sebtiatere they

will be useful for chaining multiple executions together.

4. Convergence Rates. In both of the above cases, one can prove guarantees
stating that neither algorithm’s convergence rates are ever significantbeman
passive learning by empirical risk minimizatio®, [L5]. However, it is even more
interesting to discuss situations in which one can prove error rate guesdiote
these algorithms significantlyetterthan those achievable by passive learning. In
this section, we begin by reviewing known results on these potential impratsme
stated in terms of the disagreement coefficient; we then proceed to dissuss n
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results for Algorithm 1 and a novel variant of Algorithm 2, and descriteectn-
vergence rates achieved by these methods in terms of the disagreenificiecbe
and Tsybakov’s noise conditions.

To simplify the presentation, for the remainder of this paper we will restrict the
discussion to situations with > 0 (and therefor& with d > 0 too). Handling the
extra case ol = 0 is a trivial matter, sincé = 0 would imply that any proper
learning algorithm achieves excess efidor all values ofn.

4.1. The Disagreement Coefficient and Active Learning: Basic ResBstore
going into the results for general distributioRsy on X x ), it will be instructive
to first look at the special case when the noise rate is zero. Underggamminthe
disagreement coefficient enters into the analysis of this simpler case may aid in
digestion of the theorems and proofs for the general case presenteavlatee it
plays an essentially analogous role. Most of the major ingredients of tésgor
the general case can be found in this special case, albeit in a much simpier fo
Although this result has not previously been published, the proof imtake
analogous to (one case of) the analysis of Algorithm 2ij.[

THEOREM 1. Let f € C be such thaer(f) = 0 andf; < oo. Vn € N
andd € (0,1), with probability> 1 — & over the draw of the unlabeled data, the
classifierh,, returned by Algorithm O aften label requests satisfies

er(hn) <2 - cap {_ 120, (d1n (2207) + In (3n/5)) } ‘

<

PrOOF OFTHEOREM 1. As in the algorithm, let; denote the set of classifiers
in C consistent with the first label requests. I[P(DIS(V;)) > 0 for all values
of ¢t in the algorithm, then with probability the algorithm uses alh label re-
guests. Technically, each claim below should be followed by the phrastess
P(DIS(V;)) = 0 for somet < n, in which caser(h,) = 0 so the bound triv-
ially holds.” However, to simplify the presentation, we will make this specia¢ cas
implicit, and will not mention it further.

The high-level outline of this proof is to ud& D15(V;)) as an upper bound on
sup,ey, er(h), and then showP(DIS(V;)) is halved roughly every = O(6;d)
label requests. Thus, after roughly(0;dlog(1/¢)) label requests, any € V;
should haver(h) < e.

Specifically, let\,, = [86;(dIn(8efy) + In(2n/d))]. If n < A, the bound
in the theorem statement trivially holds, since the right side exceeatherwise,
consider some non-negative< n — \,, andt’ =t + \,. Let X,,,, denote the point



14 STEVE HANNEKE

corresponding to th&” label request, and let,,,,, denote the point corresponding
to label request numbe. It must be that

{ X415 Ximet2: - - Ximy, } N DIS(V2)| > An,

which means there is an i.i.d. sample of sigg with distribution equivalent to
the conditional ofX given {X € DIS(V;)}, contained in{ X, 1, .., X, }:
namely, the firsi\,, points in this subsequence that arddS(V;).

Now recall that, by classic results from the passive learning literature §.9
this implies that on an evett;; holding with probabilityl — §/n,

dln 290 4 In 22
sup er(h|DIS(V;)) < 2 nd G
heVy )\TL

Also note that\,, was defined (with express purpose) so that

dln2en 4 n 22
TR <o),

Recall that, sincer(f) = 0, we haveer(h) = P(h(X) # f(X)). Sincef € Vp C
V4, this means for anj € Vy we have{z : h(z) # f(z)} € DIS(V;), and thus

Sup P(h(X) # f(X)) = Sup P(h(X) # f(X)|X € DIS(V;))P(DLS(V))

= sup er(h|DIS(V;))P(DIS(Vy)) < P(DIS(Vy))/(265).
heV,

SoVy C B(f,P(DIS(V;))/(26f)), and therefore by monotonicity @(D15(-))
and the definition ob

P(DIS(Vy)) < P(DIS(B(f,P(Dfsm))/(zef)))) < P(DIS(V;)/2
By a union boundFs ; holds forevery € {i\, : i € {0,1,...,|n/A,|—1}} with
probability > 1 — §. On these events, if > \,,[log,(1/€)], then (by induction)

sup er(h) <P(DIS(V,)) <e.
heVv,

Solving fore in terms ofn gives the result (with a slight increase in constants due
to relaxing the ceiling functions). O



RATES OF CONVERGENCE IN ACTIVE LEARNING 15

4.2. Known Results on Convergence Rates for Agnostic Active Learnilig.
will now describe the known results for agnostic active learning algoritistast-
ing with Algorithm 1. The key to the potential convergence rate improvements of
Algorithm 1 is that, as the region of disagreeméhtecreases in measure, the
error differenceer(h|R) — er(h/|R) of any classifiers, k' € V under thecondi-
tional sampling distribution (giver) can become significantly larger (by a factor
of P(R)~!) thaner(h) — er(h’), making it significantly easier to determine which
of the two is worse using a sample of labeled data. In particl2d},developed
a technique for analyzing this type of algorithm, and adapting that analysis to th
above definition of Algorithm 1 results in the following guarantee.

THEOREM 2. [21] Let h, be the classifier returned by Algorithm 1 when
allowed n label requests, using the boun¢® and confidence parameter
(0,1/2). Then there exists a finite universal constarguch that, with probabil-
ity>1-—0,Vn €N,

. 202 (dlog n+log 1) log 1212 n
h < 4 vl 2 o :

<

Similarly, the key to improvements from Algorithm 2 is that as the numhber
of processed unlabeled data points increases, we only need to répikediels of
those data points in the region of disagreement of the set of classifiers eeith n
optimal empirical error rates. Thus, if the region of disagreement ofiikrsswith
excess erroK e shrinks as shrinks, we expect the frequency of label requests to
shrink asm increases. Since we are careful not to discard the best classifier, an
the excess error rate of a classifier can be bounded in terms df,th&inction,
we end up with a bound on the excess error which is converging ithe number
of unlabeleddata points processed, even though we request a number of labels
growing slower tharm. When this situation occurs, we expect Algorithm 2 will
provide an improved convergence rate compared to passive learriisgupta,
Hsu, and Monteleonil5] prove the following convergence rate guarantee.

THEOREM3. [15] Let i, be the classifier returned by Algorithm 2 when al-
lowedn label requests, using the threshdld), and confidence parametér €
(0,1/2). Then there exists a finite universal constassuch that, with probability
>1—-0,Yn €N,

. v20(d1log™t28 1 Jogl) 1 n
< LR TIOYFUNNES Py
er(hy) y_c\/ - +c | d+ og | exp O(d+1og))

<
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Note that, among other changes, this bound improves the dependencelm the
agreement coefficier, compared to the bound for Algorithm 1. In both cases, for
certain ranges df, v, andn, these bounds can represent significant improvements
in the excess error guarantees, compared to the correspondingtgeargossi-
ble for passive learning. However, in both cases, when 0 these bounds have
anasymptoticdependence on of ©(n~/2), which is no better than the conver-
gence rates achievable by passive learning (e.g., by empirical risk mininmzatio
Thus, there remains the question of whether either algorithm can achigvp-as
totic convergence rates strictly superior to passive learning for distriisitioth
nonzero noise rates. This is the topic we turn to next.

4.3. Active Learning under Tsybakov’s Noise Conditionk.is known that for
most nontrivialC, for anyn andv > 0, for every active learning algorithm there
is some distribution with noise rate for which we can guarantee excess error
no better thanx vn~1/2 [22]; that is, then~1/2 asymptotic dependence enin
the above bounds matches the corresponding minimax rate, and thus bannot
improved as long as the bounds dependlibgyy only viav (and#). Therefore,
if we hope to discover situations in which these algorithms have strictly superior
asymptotic dependence anwe will need to allow the bounds to depend on a more
detailed description of the noise distribution than simply the noisetate

As previously mentioned, one way to describe a noise distribution using a more
detailed parametrization is to use Tsybakov’s noise conditions (Condijtibmthe
context of passive learning, this allows one to describe situations in wheatate
of convergence is betweert ' andn—'/2, even when > 0. This raises the natural
guestion of how these active learning algorithms perform when the noisidis
tion satisfies this condition with finite and x parameter values. In many ways,
it seems active learning is particularly well-suited to exploit these more falera
noise conditions, since they imply that as we eliminate suboptimal classifiers, the
diameter of the remaining set shrinks; thus, for fiitealues, the region of dis-
agreement should also be shrinking, allowing us to focus the samples in arsmalle
region and accelerate the convergence.

Focusing on the special case of learning one-dimensional threshofsiffielas
under a certain uniform marginal distribution, Castro and Nowi&k$tudied con-
ditions related to Conditiod. In particular, they studied a threshold-learning al-
gorithm that, unlike the algorithms described here, takess input, and found

K
2k—2

its convergence rate to be (1"%) whenx > 1, andexp{—cn} for some

(u-dependent) constanf whenx = 1. Note that this improves over the =1

rates achievable in passive learnid$,[29]. Subsequently, Balcan, Broder, and
Zhang [7] proved an analogous positive result for higher-dimensional lingza-se
rators, and Castro and Nowakd additionally showed a related result for bound-
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ary fragment classes (see below); in both cases, the algorithm depeplatstly
on the noise parameters. Later, in a personal communication, LangfdrGas:
tro claimed that in fact Algorithm 1 achieves this rate (up to log factors) for the
one-dimensional thresholds problem, leading to speculation that pertesgsiti-
provements are achievable in the general case as well (under conadititims dis-
agreement coefficient). Castro and NowaB][also prove that a value n~ 72
(or exp{—c/n}, for somec’, whenx = 1) is also alower boundon the minimax
rate for the threshold learning problem. In fact, a similar proof to theirs ean b
used to show this same lower bound holds for any nontrividfor completeness,
a proof of this more general result is included in Apperidix

Other than the few specific results mentioned above, it was not previausiyrk
whether Algorithm 1 or Algorithm 2, or indeegthyactive learning algorithm, gen-
erally achieves convergence rates that exhibit these types of improt&emen

4.4. Adaptive Rates in Active Learning: Algorithm 1The above observations
open the question of whether these algorithms, or variants thereof, imthrisve
asymptotic dependence on It turns out this is indeed possible. Specifically, we
have the following result for Algorithm 1.

THEOREM4. Leth, be the classifier returned by Algorithm 1 when allowed
n label requests, using the bounfly and confidence parametér € (0,1/2).
Suppose further thaD xy satisfies Conditiorl. Then there exists a finite{ and
pu-dependent) constantsuch that, for any: € N, with probability> 1 — 4,

. 2. exp — rdiean e ,  Whenk =1
er(hy) — v < { { 62(dlog n+1 g(1/5))}

2 % ‘
c (0 (dlog"+1°g(l/5))logn> 72 whenk > 1

n

<

ProoF oFTHEOREM 4. We will proceed by bounding thabel complexityor
size of the label budget that is sufficient to guarantee, with high probability, that
the excess error of the returned classifier will be at nad$or arbitrarye > 0);
with this in hand, we can simply bound the inverse of the function to get thé resu
in terms of a bound on excess error.

Throughout this proof (and proofs of later results in this paper), wemalke
frequent use of basic facts abeu{ 1| R). In particular, for any classifiers, 1’ and
setR C X, we haveer(h) = er(h|R)P(R) + er(h|X \ R)P(X \ R); also, if
{z : h(z) # h/(z)} C R, we haveer(h|X \ R) —er(h/|X \ R) = 0 and therefore
er(h) —er(h’) = (er(h|R) — er(h'|R))P(R).

Note that, by Lemmd and a union bound, on an event of probability §, (2)
holds withd’ = ¢ /n for every set, relative to the conditional distribution given its
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respectiveR set, for any value of.. For the remainder of this proof, we assume that
this 1 — § probability event occurs. In particular, this means that for every C
and every set in the algorithmL B(h,Q,d/n) < er(h|R) < UB(h,Q,d/n),

for the setR that(Q) is sampled under.

Our first task is to show that we never remove the “good” classifiers from
We only remove a classifigr from V if »’ = argmin, ., UB(K',Q,d/n) has
LB(h,Q,d/n) > UB(h,Q,d6/n). Eachh € V has{z : h(z) # h'(x)} C
DIS(V) C R, so that

UB(I,Q,5/n) — LB(h,Q,8/n) > er(K'|R) — er(h|R) = W

Thus, for anyh € V with er(h) < er(h'), UB(IN,Q,d/n) — LB(h,Q,d/n) >
er(h'|R) — er(h|R) = (er(h’) —er(h))/P(R) > 0, so that on any given round
of the algorithm, the sefh € V : er(h) < er(h)} is not removed froni’. In
particular, since we always have(h’) > v, by induction this implies the invariant
infecy er(h) = v, and therefore also

Vit er(hy) — v =er(h) — ég‘f/ er(h) = (er(h|R) — églf/ er(h|R))P(R) < [,
where again the second equality is due to the factthat V', {z : he(z) # h(z)}
C DIS(V) € R. We will spend the remainder of the proof bounding the size
of n sufficient to guarantee som& < e. In particular, similar to the proof of
Theoreml, we will see that as long a% > ¢, we will halveP(D1S(V)) roughly
everyO (92de%‘2) label requests, so that the total number of label requests before

somef; < ¢ is at most roughh (02d63*2 log(l/e)).
Recalling the definition oh!*! (from Definition2), let

(4) VO = {h eV: likmSUP]P’(h(X) 7 h[k}(X)) - P;]@%)}

Note that after Step 7, i (!) = (), then
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P(DIS(V))

<P (DIS ({h € C:limsupP (h(X) i h[k](X)> < MRV(ZQ)}))

k—oo

= lim P (DIS ( N B (h",p(R) /(29))))

k>k'

< lim P ( N pIs (B (h[’“],IP’(R)/(%))))
k>k'

P(R) _ P(R)

20 2
so that we will satisfy the condition in Step 2 on the next round. Here we Usee
the definition off in the final inequality and equality. On the other hand, if after

Step 7, we havé& (?) = (), then

< liminf P (D1s (B, P(R)/(20)))) < lim inf 0

0 {h € Vi limsup B(h(X) 2 H¥(X) > 29}

lim sup P(h(X) # AF(X))\ "
heV:|-t=x ) (
P

"

heV (diam(er(ﬁ)—u;@))“ - <2(M}Z)>“}

|
{
c {hEV:er(h)—u> (P(R)) }
{
{
{

210

h eV :er(h|R) — hl/rg/ er(h'|R) > IP(R)”l(ZuH)”}
h€V:UB(h,Q,0/n) - min LB(I',Q,8/n) > P(R)“l(m@)“}

'e
heV :LB(h,Q,d/n)— }{nir‘}UB(h’,Q,é/n)

'e

> BR)™ ! (206) "~ 46(1Q1,5/m) |

Here, the third line follows from the fact that (h¥1) < er(h) for all sufficiently
large k, the fourth line follows from Conditior, and the final line follows from
the definition ofU B and L B. By definition, everyh € V hasLB(h,Q,d/n) <

ming ey UB(R', Q,5/n), so for this last set to be nonempty after Step 7, we must
haveP(R)"~1(2uf)~" < 4G(|Q|,5/n).
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Combining these two case¥ ) = 0 andV(?) £ (), since|Q| gets reset td
upon reaching Step 3, we have that after every execution of Step 7,

(5) P(R)"~(2u0) ™" < 4G(1Q| - 1,8/n).

If P(R) < 2G(|Q\i1 5y < ZG(le 57y then certainlys; < e (by definition of
B < 2G(|Q|,/n)P(R)). So on any round for whichi; > ¢, we must have

€

2G(1Q = 1,4/n)

Combining 6) and @), on any round for whicl®, > e,

(6) < P(R).

€

(2G(IQ! —1,4/n
Solving forG(|Q| — 1, /n) reveals that whep, > e,

k—1
@) )) (2160) " < 4G(Q| - 1,6/n).

r—1

®) 41 (2) " (2u0) < G(Q| — 1,6/n).

Basic algebra shows that when> |Q| > d, we have

In$+(d+1)In(n)
Q|

Combining this with 8), solving for|Q|, and addingl to handle the casi)| < d,
we have that on any round for whigh > e,

G(IQI = 1,6/n) < 3\/

2r—2
2\ F 4
9) Q| < (6) (610)%4%/" (111 5+ (d+1) In(n)) + d.
Sinces; < P(R) by definition, andP( R) is at least halved each time we reach Step
3, we need to reach Step 3 at mdkig,(1/¢)] times before we are guaranteed

somef; < e. Thus, any

(10) n>1+ ((i)

suffices to guarantee either sor@| exceeds §) or we reach Step 3 at least
[logy(1/€)] times, either of which implies the existence of some< e. The
stated result now follows by basic inequalities to bound the smallest valae of
satisfying (LO) for a given value of. Ol

2k—2

(610)242/% (mé +(d+1) ln(n)> - d) logs 2
€
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If the disagreement coefficient is finite, Theordncan often represent a sig-
nificant improvement in convergence rate compared to passive leawtiege we
typically expect rates of order—/(25=1) [13, 27, 29]; this gap is especially no-
table when the disagreement coefficient andre small. Furthermore, the bound
matches (up to logarithmic factors) the form of the minimax fateer bound
proved by Castro and Nowal | for threshold classifiers (wher¢ = 2); as
mentioned, that lower bound proof can be generalized to any nontfivigee
Appendix D), so that the rate of Theoreshis nearly minimax optimal for any
nontrivial C with boundeddisagreement coefficients. Also note that, unlike the up-
per bound analysis of Castro and Nowak][ we do not require the algorithm to
be given any extra information about the noise distribution, so that thi# iesu
somewhat stronger; it is also more general, as this bound applies to amrgrbitr
hypothesis class.

A refined analysis and minor tweaks to the algorithm should be able to reduce
the log factors in this result. For instance, defining UB and LB using the umifo
convergence bounds of Alexanddi,[and using a slightly more complicated al-
gorithm closer to the original definitio] 21] — taking multiple samples between
bound evaluations, allowing a larger confidence argument to the UB arelalB
uations — thdog? n factor should reduce at least lieg n log log n, if not further.
Also, as previously mentioned, it is possible to replace the quanki&y and
P(DIS(V)) in Algorithm 1 with estimators of these quantities based on a finite
sample of unlabeled data points, while preserving the results of Thebrgnto
constant factors. For completeness, we provide an example of suchtessimma
AppendixC, along with a sketch of how the proof of Theordncan be modified
to compensate for using these estimated probabilities.

4.5. Adaptive Rates in Active Learning: Algorithm 2Note that, as before;
gets divided byd? in the rates achieved by Algorithm 1. As before, it is not clear
whether any modification to the definitions &fB and LB can reduce this ex-
ponent ond from 2 to 1. As such, it is natural to investigate the rates achieved
by Algorithm 2 under Conditiord; we know that it does improve the dependence
on ¢ for the worst case rates over distributions with any given noise rategso w
might hope that it does the same for the rates over distributions with any given
values ofu and . Unfortunately, we do not presently know whether the original
definition of Algorithm 2 achieves this improvement. However, we now pregsen
slight modification of the algorithm, and prove that it does indeed providedhe d
sired improvement in dependencenvhile maintaining the improvements in the
asymptotic dependence anSpecifically, consider the following definition for the
threshold in Algorithm 2.

(11) Ap(L,Q,hW V) §) = 3Ec(LUQ,0; L),
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whereéc(-, ;) is defined in Appendi, based on a notion of local Rademacher
complexity studied by Koltchinskiig4]. In particular, the quantity.c is known to

be adaptive to Tsybakov’s noise conditions, in the sense that morefdgaroise
conditions yield smaller values &f-. Using this definition, we have the following
theorem; its proof is included in Appendi

THEOREM5. Supposeé,, is the classifier returned by Algorithm 2 with thresh-
old as in(11), when allowedn label requests and given confidence parameter
0 € (0,1/2). Suppose further thd? xy satisfies Conditiod with finite parameter
valuesx andp. Then there exists a finite @nd ;. -dependent) constantsuch that,
with probability> 1 — 6, Vn € N,

. c(d+1logt -e:np{—Jc(’f}, whenk = 1
er(hy) — v < ( 5) 6(d-+log(1/9))

C(M)* whenk > 1

n

<

Note that this does indeed improve the dependend® ceducing its exponent
from 2 to 1; we do lose some in that there is now a square root in the exponent of
thex = 1 case; however, as with Theoretit is likely that slight refinements to
the definition ofA,,, would reduce this (though we may also need to weaken the
theorem statement to hold for any singlerather than simultaneously for ad).

The bound in Theoreriis stated in terms of the VC dimensidnHowever, for
certain nonparametric hypothesis classes, it is sometimes preferable tidyojinen
complexity of the class in terms of a constraint on ¢iméropyof the class, relative
to the distributiorDxy [see e.g.13, 24, 29, 30]. Specifically, fore € [0, 1], define

we(m,e) =E , S}}l}é@ |(er(h1) — erm(h1)) — (er(ha) — erm(ha))|.
B{h1 (X)£ha (X)} <

CONDITION 2. There exist finite constantés > 0 andp € (0,1) s.t.¥m € N
— 1
ande € [0, 1], we(m,e) < o - max{€¥m*1/2,m—m}_ o

In particular, the entropy with bracketing condition used in the original mini-
max analysis of Tsybakowp] implies Condition2 [24], as does the analogous
condition for random entropylB, 19, 25]. In passive learning, it is known that em-
pirical risk minimization achieves a rate of order”/ (2+2—1) under Conditiond
and2[24, 25] (see also AppendiB, especially 19) and Lemmdb), and that this is
sometimes minimax optima2p]. The following theorem gives a bound on the rate
of convergence of the same version of Algorithm 2 as in Thedsethis time in
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terms of the entropy condition which, as before, is faster than the pdsaiveng
rate when the disagreement coefficient is finite. The proof of this resultlisded
in AppendixB.

THEOREM6. Supposeé,, is the classifier returned by Algorithm 2 with thresh-
old as in(11), when allowedn label requests and given confidence parameter
5 € (0,1/2). Suppose further tha&? xy satisfies Conditiord with finite parameter
valuesx andp, and Condition2 with parameter values and p. Then there exists
a finite (<, u, a and p -dependent) constamtsuch that, with probability> 1 — §,

Vn € N,
0log(n/8)\ 7=te2

er(hn) —v < c(

<

Again, it is likely that refinements to thA,,, definition may lead to improve-
ments in the log factor. Also, although this result is stated for Algorithm 2, it is
conceivable that, by modifying Algorithm 1 to use definitionslofand 5, based
on é@(Q, d; (), an analogous result might be possible for Algorithm 1 as well.

It is worth mentioning that Castro and Nowak3] proved a minimax lower
bound for the hypothesis classldundary fragmentswvith an exponent having a
similar dependence on related definitionsxoénd p parameters to that of Theo-
rem6. Their result does provide a valid lower bound here; however, it isleatr
whether their lower bound, Theorenboth, or neither is tight in the present con-
text, since the value af is not presently known for that particular problem, and
the matching upper bound of 3] was proven under a stronger restriction on the
noise than Conditiod. However, see35| for an analysis of the disagreement co-
efficient for other nonparametric hypothesis classes, charactenyzsahtothness
of the decision surface.

5. Model Selection. While the previous sections address adaptation to the
noise distribution, they are still restrictive in that they deal with hypothessseka
of limited expressiveness. That is, the assumption of finite VC dimension implies a
strong restriction on the variety of classifiers one can represent fooxdmate) in
the class; the entropy conditions allow slightly more flexibility, but under naatri
distributions, even the entropy conditions imply a significant restriction onxhe e
pressiveness of the class. Thus, for algorithms restricted to clas§ifiersuch a
restricted hypothesis class, it is often unrealistic to expect convergeticeBayes
error rate. We address this issue in this section by developing a gelgnairan
for learning with a sequence of nested hypothesis classes of increasnpjexity,
similar to the setting of Structural Risk Minimization in passive learnBj.[The
objective is to adapt, not only to the noise conditions, but also to the compldxity o



24 STEVE HANNEKE

the optimal classifier. The starting point for this discussion is the assumpti@n of
structure orC, in the form of a sequence of nested hypothesis classes:

CicCycC---

Each class has an associated noiserate infycc, er(h), and we define/,, =

lim; ., v;. We also letd; andd; be the disagreement coefficient and VC dimen-
sion, respectively, for the s&t;. We are interested in an algorithm that guarantees
convergence in probability of the error rateitg. We are particularly interested in
situations where,, = v*, a condition which is realistic in this setting since the
setsC; can be defined so that it is always satisfied, even while maintaining each
d; < oo [see e.g.16]. Additionally, if we are so lucky as to have somg= v*,

then we would like the convergence rate achieved by the algorithm to bégrot s
nificantly worse than running one of the above agnostic active learniogithigns

with hypothesis clas§; alone. In this context, we can define a structure-dependent
version of Tsybakov’s noise condition as follows.

CoNDITION 3. For some nonempty C N, for eachi € I, there exist finite
1
constantgs; > 0 andx; > 1, such thatve > 0, diam(e; C;) < peri. o

Note that we do not require evety, i € N, to have finiteu; andx;, only some
nonempty sef C N; this is important, since we might not expéct to satisfy
Conditionl for small indices, where the expressiveness is quite restricted.

In passive learning, there are several methods for this type of mobs-se
tion which are known to preserve the convergence rates of each(jassder
Condition3 [e.g.,24, 29]. In particular, Koltchinskii 4] develops a method that
performs this type of model selection; it turns out we can maodify Koltchinskii's
method to suit our present needs in the context of active learning; thiksrés
a general active learning model selection method that preserves theofyipes
proved rates discussed in the previous section. This modification is peddes
low, based on using Algorithm 2 as a subroutine. (It should also be pessib
define an analogous method that uses Algorithm 1 as a subroutine instead.)
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Algorithm 3
Input: nested sequence of clas$€s}, label budget:, confidence parametér
Output: classifieh,,

0. Fori = |/n/2), [\/n/2] — 1, [\/n/2] —2,...,1
1. Letl;, andQ;, be the sets returned by Algorithm 2 run with and the
threshold 11), allowing |n/(2i%) | label requests, and confident& 2i?)

2. Leth;, «— LEARNCi(UjZiﬁjn, Qm>
3. Ifhy, #@andvjs.ti<j<|y/n/2],

R e’rﬁjnUQ,in (hi”) - er»c,jnUan (hjn) S %éCJ (EJTL U Q]n7 6/(2]2)a E]TL)
4, hn — hin
5. Returnh,,

The functioné.(-, -;-) is defined in AppendiA. This method can be shown to
have a confidence bound on its error rate converging.toat a rate never sig-
nificantly worse than the original passive learning method of Koltchingiii [as
desired. Additionally, we have the following guarantee on the rate of cgaxee
under Conditior3. The proof is similar in style to Koltchinskii’s original proof,
though some care is needed due to the altered sampling distribution and the con-
straint setC;,,. The proof is included in Appendi&.

THEOREM 7. Suppose, is the classifier returned by Algorithm 3, when al-
lowedn label requests and confidence parametee (0,1/2). Suppose further
that Dyy satisfies Conditiof3. Then there exist finite:{ and i; -dependent) con-
stantsce; such that, with probability> 1 — §, Vn € N,

) C; (dz—HOg %)e:l:p {— /Ciei(di’rj_log}s)}, if R; = 1
er(hn) —Voo < Smi}l(w—l/oo)—l— o] g 11, T .
' C; (1( ! og:Jr 0g6)> ' , if k;>1

<

In particular, if we are so lucky as to hawve = v* for some finitei, then the
above algorithm achieves a convergence rate not significantly worsétieguar-
anteed by Theorera for applying Algorithm 2 directly, with hypothesis clag€s.
Note that the algorithm itself has no dependence on the, setr has it any depen-
dence on each class’'s complexity parametkrs;, u;, 0;; the adaptive behavior
of the data-dependent boué@j allows the algorithm to adaptively ignore the re-
turned classifier from the runs of Algorithm 2 for which convergencéow,ghus
automatically selecting an index for which the error rate is relatively small.
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As in the previous section, we can also show a variant of this result wigen th
complexities are quantified in terms of the entropy. Specifically, consideothe f
lowing condition and theorem; the proof is in AppendixAgain, this represents
an improvement over known results for passive learning when the disagnt
coefficients are finite.

CoONDITION 4. For each: € N, there exist finite constants > 0, p; € (0, 1)

1—p; __1
s.t.Vm € Nande € [0, 1], we, (m, €) < a; - max {e;m_l/z, m o 1Fe } o

THEOREMS8. Supposeé, is the classifier returned by Algorithm 3, when al-
lowedn label requests and confidence parametee (0,1/2). Suppose further
that Dyy satisfies Condition8 and 4. Then there exist finitex({, 1;, ; and p;
-dependent) constants such that, with probability> 1 — §, Vn € N,

0; log(n/5)> QHij:’i—Q

er(iLn) — Voo < 3min(v; — Veo) + ¢ <
n

el

In addition to these theorems for this structure-dependent version bakasy's
noise conditions, we also have the following result for a structure-inckpd
noise condition, in the sense that the noise condition does not depend parthe
ticular choice ofC; sets, but only on the distributidR yy (and in some sense, the
full classC = |, C;); it may be particularly useful when the claSss universal,
in the sense that it can approximate any classifier.

THEOREMY9. Suppose the sequengg; } is constructed so that,, = v*, and
h,, is the classifier returned by Algorithm 3, when allowedabel requests and
confidence parameter < (0, 1/2). Suppose that there exists a constant 0 s.t.
for all measurableh : X — Y, er(h) — v* > pP{h(X) # h*(X)}. Then there
exists a finite f-dependent) constantsuch that, with probability> 1 -4, Vn € N,

~ i n
er(hy) —v* < cIiIéII{]l(l/ V') + <d + log (5> ez:p{ \/czQHi(drHOg(’é/&)}

<

The conditionv,, = v* is quite easy to satisfy: for exampleS; could be
axis-aligned decision trees of depthor thresholded polynomials of degréeor
multi-layer neural networks with internal units, etc. As for the noise condition
in Theorem9, this would be satisfied whenev&(|n(X) — 1/2| > ¢) = 1 for
some constant € (0, 1/2]. The case wherer(h) — v* > uP{h(X) # h*(X)}"
for k > 1 can be studied analogously, though the rate improvements over passive
learning are more subtle.
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6. Conclusions. Under Tsybakov’s noise conditions, active learning can of-
fer improved asymptotic convergence rates compared to passive leaimémgthe
disagreement coefficient is finite. It is also possible to preserve thesevatpr
convergence rates when learning with a nested structure of hypotlesiss, us-
ing an algorithm that adapts to both the noise conditions and the complexity of the
optimal classifier.

APPENDIX A: DEFINITION OF &€ AND RELATED QUANTITIES

We define the quantitﬁ@ following Koltchinskii's analysis of excess risk in
terms of local Rademacher complexit®4]. The general idea is to construct a
bound on the excess risk achieved by a given algorithm, such as empisical
minimization, via an application of Talagrand’s inequality. Such a bound should
be based on a measure of the expressiveness of the set of furiCtibosvever,
to bound the excess risk achieved by a particular algorithm given a nuofber
data points, we need only measure the expressiveness of the setidrisrthe
algorithm is likely to select from. For reasonable algorithms, such as empirical
risk minimization, this means the set of functions with reasonably small excess
risk. Thus, we can bound the excess risk of the algorithm in terms of a neeafsu
expressiveness of the set of functions with relatively small risk, typicefigrred
to as docal complexity measure. This reasoning is somewhat circular, in that first
we must decide how small to expect the excess risk of the returned furiotion
be before we can calculate the local complexity measure, which itself is used to
calculate a bound on the risk of the returned function. Thus, we defingotived
on the excess risk as a kind of fixed point. Furthermore, we can estimage thes
guantities using data-dependent confidence bounds, so that the eskdsound
can be calculated without direct access to the distribution. For the datsdiept
measure of the expressiveness of the function class, we can useeen&dckr
process. A detailed motivation and derivation can be foun@4h |

For our purposes, we add an additional constraint, by requiring thetiéuns
we calculate the complexity of to agree with the labels of a labeled s&his
is helpful for us, since given a séi of labeled data with true labels, for any two
functionsh; andhs that agree on the labels g4f it is always true that
ercug(hi) — ercug(he) equals the difference of the true empirical error rates. As
we prove below, as long as the g&is chosen carefully (i.e., as in Algorithm 2),
the addition of this constraint is essentially inconsequential, softhaemains a
valid excess risk bound. The detailed definitions are stated as follows.

For any functionf : X — R, and&y, &, ... a sequence of independent random
variables with distribution uniform if—1, +1}, define theRademacher process
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for f under a finite set of (index, label) paifsC N x ) as

R(f |Z€z

(i,y)€S

The¢; should be thought of as internal variables in the learning algorithm, rather
than being fundamental to the learning problem.
For any two finite set€ ¢ N x Y andS C N x Y, define

C[L] = {h € C: erg(h) = 0},

C(e; £,8) = {h e C[L] : erg(h) — mér[lﬁ] ers(h') < e},

De(e; £, 8) = sup = > L[hi(Xs) # ha(X5)],

h1,ha€C(L,S) | | (i,y)es

- 1
and ¢c(e; L,5) == sup R(h1 — hg; S).
h1,hoeC(e;L,9)

Ford,e > 0, m € N, defines,,(6) = lnw andZ. = {j € Z : 20 > ¢},
and for any se C N x ), define the se§(™ = {(i,y) € S : i < m}. We use
the following definitions from KoltchinskiiZ4] with only minor modifications.

DEFINITION 3. For e € [0, 1], and finite setsS, £ C N x Y, define

515(0)De(ée; £,8)  515/(6)
5] S|

(7@(6,5;5, S) = K é@(ée;E,S) + J

and &c(S,0; L) = inf {e >0:Vj € Ze, migUC(2j,6; £ gmy < 23'—4} :
me

where, for our purposes, we can take= 752, andé¢ = 3/2, though there seems
to be room for improvement in these constants. For completeness, weedise
Ec(0,0;C, L) = oo by convention. o

We also define a related quantity, representing a distribution-dependsiurve
of &, also explored by Koltchinskiid4]. Fore > 0, define

C(e) ={heC:er(h) —v <e}.
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Form € N, let

¢c(m,e) =E sup |(er(hi) —erm(hn)) — (er(ha) — erm(ha))l,
h1,h2€C(€)

Uc(m,e,8) = K (¢C(m,ée) n \/Sm(é)difnm(ée; C) N s%é)) ?

and  &Ec(m,d) = inf {e >0:VYj € Ze,Uc(m,2,6) < 2]‘—4} 7

where, for our purposes, we can take= 8272 andé = 3. For completeness, we
also define€(0,0) = co.

A.1l. Definition of rqg. In Definition 1, we tookrg = 0. If § < oo, then this
choice is usually relatively harmless. However, in some cases, saitiad results
in a suboptimal, or even infinite, value 6f which is undesirable. In these cases,
we would like to setry as large as possible while maintaining the validity of the
bounds. If we do this carefully enough, we should be able to establishdsou
that, even in the worst case whén= 1/r(, are never worse than the bounds
for some analogous passive learning method; however, to do this regyite
depend on the parameters of the learning problem: namely, C, andDxy .

The effect of a largery can sometimes be dramatic, as there are scenarios where
1 <« 0 < 1/r¢ [8]; we certainly wish to distinguish between such scenarios, and
those wher@ oc 1/ry.

Generally, depending on the bound we wish to prove, different valtieg o
may be appropriate. For the tightest bound in term8 pfoven below (namely,
Lemma7), the definition ofrg = rc(n,d) in (13) below gives a good bound. For
the looser bounds (namely, TheoreBhand6), a larger value of, may provide
better bounds; however, this same general technique can be employefthtoal
good value for in these looser bounds as well, simply using upper bound$3)n (
analogous to how the theorems themselves are derived from L&rmtiaeir proof
below. Likewise, one can state analogous refinementsg éér Theoremsl - 4,
though for brevity these are left for the reader’s independent ceradidn.

DEFINITION 4. Define

(12)
m—1
mc(n,d) = min{mGN in < log24?2 + 262 IP’(DIS((C(6€@(€, 5)))) }
=0
and

1 me(n,0)—1

(13) rc(n,d) = max {~ Z diam(6Ec (£, 6); C), 2_"} .

mc (7’L, 5) /=0
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<

We use this definition ofy = r¢(n,d) in all of the proofs below. In partic-
ular, with this definition, Lemm& is never significantly worse than the analo-
gous known result for passive learning (though it can be significaetigbwhen
0 << 1/rp).

APPENDIX B: MAIN PROOFS

Recall thatz(™) = {(i,Y;) : i < m} is the mdexedrue labels for the first
m points in the data sequence. l&t(m, d) = Ec(Z(™), 5 (). For eachn € N,

let h*, = argmin er,,(h) be the empirical risk minimizer it for the true labels
heC
of the firstm data points. The following lemma is crucial to all of the proofs that

follow.

LEMMA 5. [24] For 6 € (0,1/2), there is an eventc s with P(Ecs) >
1 —§/2 such that, on everfic 5, Vim € N,VYh € C,V7 € (0,1/m),Vh' € C(7),

er(h) — v < max {2(erm(h) —erm(B) 4 7), Ec(m, 5)}
erm(h) = erm(hy) < 3max {(er(h) = v), €c(m, )},
Ec(m,d) < Ec(m, ),

and for anyj € Z with 2/ > &c(m, ),

sup |(erm(h1) —er(hn)) — (erm(h2) — er(ha))| < Uc(27,6;0, 2™).
hi,ho€C(27)

<

This lemma essentially follows from details of the proof of Koltchinskii’s The-
orem 1, Lemma 2, and Theorem 34], combined with a union bound so that
the results hold simultaneously for all. We will not prove Lemméb here. The
reader is referred to Koltchinskii's paper for the details. Specificallghexd the
four inequalities of Lemma& basically follows from Step 5 of Koltchinskii's proof
of his Theorem 3 in24], in combination with other facts. In particular, the third
inequality in Lemmab directly follows from Koltchinskii's Theorem 3. The fourth
inequality follows from a combination of the aforementioned Step 5, and sound
on the probability of a particular everit, (s, (d)) given in the proof of Koltchin-
skii's Theorem 1. The second inequality in Lem&#llows from a combination
of Koltchinskii's Theorem 3 and (9.2) in his Lemma 2 proof. Note that the aduditio
of the “min” in our definition of&¢, compared to Koltchinskii's original definition

meN
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(of Sn(t)), does not cause any problems for Theorem 2#j,[since we are em-
ploying a union bound to enable Koltchinskii’'s Theorem 3 to apply simultargous
for all n anyway, and sincec(n, €) ands”Tw) are nonincreasing functions of
The first inequality in our Lemma& follows from Koltchinskii's Theorem 3, com-
bined with a slight twist on the sequence of bounds on the excess ris#t fiotine
middle of Koltchinskii's page 2633; specifically, we can obtain this first iradity
if we follow this same sequence of bound relaxations, exneptelaxing the dif-
ference of empirical risks to the excess empirical risk (part of the thleckation
in the sequence). Finally, we have sgtd) precisely so that Koltchinskii's lower
bounds on the probabilities of the relevant events imply that all four inequsalitie
our Lemma5 hold for allm, k, 7, andh’ with the desired — §/2 probability.

B.1. Proofs Relating to Sectiond. For the proofs that follow, we will le
and(@ be the sets returned by Algorithm 2. It is important to keep in mind that, as
defined, the set§(™ andQ(™ are indeed the values that the sétand@ have
at the conclusion of roungh in the algorithm execution (i.e., after processing the
data pointX,,). Furthermore, every index processed is added to eitharQ), so
that we always haveC ™|+ |Q(™)| = |£(™ U Q™| = m, foranym < |LUQ).

LEMMA 6. On eventEc s (of Lemmab), Vim € NU {0} withm < [£L U Q),

Ec(LM™uQM™ 5L = Ec(m, ),
Ve >0, i e Cle £, £ uQm) C C(e 0, 2M),
and
Ve < &c(m, ), Ucle,d; £, £ U Q™) = Uc(e, ;0, Z2™).
o

PROOF OFLEMMA 6. Throughout this proof, we assume the evét; oc-
curs. We proceed by induction en, with the base case of = 0 (which clearly
holds). Suppose the statements are true fordll< m. The caseL(™ = ( is
trivial, so assumeC(™) = (). For the inductive step, suppose< é@(m, 9), and
take any

he Cle 0, Z20M).

In particular, by Lemm#&, taking anyr € (0,1/m) andh’ € C(7), we have
er(h) — v < max {Z(erm(h) —erp(R) + 1), &c(m, 5)}
< max {Z(erm(h) —erm(h) 4+ 1), &c(m, 5)} .
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Taking the limit asr — 0 implies
er(h) — v < max {2(er(h) = erm(hs,)), Ec(m, 8) } < 28c(m, 0),

and thus for any non-negative integef < m and anyh’ € C, Lemmab implies

et (h) — erpy (h') < erpy(h) — erp (h%,) < ; ax {er(h) -, é(c(m/, 5)}
< g x{28c(m, 0), Ec(m’,0)} < 3Ec(m’,6)=3Ec(LIUQ™), 5; £0™)),

Since this is below the threshalsi,,. (£™), Q™) h, 1/, ), by induction onn’ <
m we must haver ., (k) = 0, and thereforé € C(e; £, L™ UQ(™). Since
this is the case for all sudh, we must have that

(14) Cle; £, £m y QM) D C(e; 0, 2(M).
In particular, this implies that
Uc(e,8; £ £ U Q™)) > Ugcl(e, 6;0, Z0™).
Sinceé(m, ) is non-increasing ime, by the inductive hypothesis, this means

min Uc(Ec(m, ), L0, L0 U Q™))

m/'<m

1 -
min Uc(&c(m,6),8;0,Z20m)) > g écm, ),

m’'<m

where the last inequality follows from the definition&&A(m, 0), (whichis a power
of 2). Thus, we must havéc (L™ U Q™) §; £L0™) > Ec(m, 6).
The relation in 14) also implies that

iy € C(Ec(m, 8); L, LW U Q™) C ClLtm)],
and therefore
Ve >0, ht e Cle; £, £ U Q)Y C C(e; 0, 2M).
The inductive hypothesis already gives us that
Ve > 0,Vm' < m, @(6; £m) )y Q(m/)) - @(6; 0, Z(m/)).
Combining these facts implies

Ve > 0,Ym' <m, ﬁ@(e,é;ﬁ(m) m)yQim ) Uc(e, 6; 0, Zm) ),
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and therefore
Ve >0, min Uc(e,d; £, £0") U Q™)) < min Ug(e, 8;0, Z0m)).
m/<m m/<m

A~

But this means.c(£(™ U Q™) §; £0™) < &c(m, d). The lemma now follows
by the principle of induction. Ol

LEMMA 7. Suppose for any € N, hy, is the classifier returned by Algorithm
2 with threshold as irf{11), when allowedr label requests and given confidence
parameten € (0,1/2), and suppose further that,, is the value ofQ|+ |£| when
Algorithm 2 returns. Then there is an evéht s such thatP(Hc s N Ecs) > 16,
such that onflc s N Ec s, Vn € N,

(15) er(hy) — v < &c(my,d),

and

4m
(16) n < min {mn, logy

(1 + mil diam(6E¢ (¢, 6); (C)> } .

(=0

PROOF OFLEMMA 7. Again, assume everfc ; occurs. By Lemmd, V7 €
(0,1/m,) andh!, € C(71),

er(hp) —v < max{ 2(erm, (hn) — erm, (h\) + 1), é@(mn, 5)}
< max {2(er, (hn) = erm, (h5,,) + 7), Ec(my, 8)}.

Letting 7 — 0, and noting thaer,(h%, ) = 0 (Lemmas) implies ery,, (hn) =
erm,, (hi, ), we have

er(hn) — v < Ec(mn, 0) < Ec(mp, d),

where the last inequality is also due to LemBaNote that thiséc(mn, 0) repre-
sents an interesting data-dependent bound.

To get the bound on the number of label requests, we proceed as fdHomnany
m € N, and intege¥ € [0,m), let I, be the indicator for the event that Algorithm
2 requests the labéf, . ; and letN,, = Z;’"“:‘Ol Iy. Also, let I, be the indicator for
the event{ X,,, € DIS(C(6Ec(¢,6)))}, and letN/, = -7 I;. Noting that

I; = 1[{X¢11 € DIS(C(3E(LOUQWY, 5; £O); £, LOUQO))} N {my, > )],
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we have that for any > 0,

P [{Nm > q} N E(C,(S]

m—1

> 1 [{Xeq1 € DIS(C(3Ec(t,0);0, 29))} N Ecy] > g
(=0

m—1

> 1 [{Xe1 € DIS(C(6Ec(4,0)))}] > q] =P [Ny, >q].
(=0

The first inequality is due to Lemmdsand5, while the second inequality is due
to Lemmab. Note that

E[N/ ] = mi:l Pl =1] = miflP’(DIS((C(QSC(& 5)))) .
=0 =0

Let us name this last quantity,. Thus, by union and Chernoff bounds,

P

4m?
Im € N : Ny, > max < 2eqm, ¢m + logs 5 N Ec,s
4m?
< Z P |{ Ny, > max < 2eqm, ¢m + 1ogs 5 N Ecs
meN
4m? 1)
< Z IP’Han >max{2eqm,qm+log2}} ze: r
For anyn, we known < m, < 2". Therefore, we have that on an event (which

<90
meN 2
includesEc s) occurring with probability> 1 — ¢, for everyn € N,

4 2
n < max{N,,,log, m,} < max {Qeqmn, Gm,, + logs 7:;"}

mp—1

< log, 4T +2¢ Y P(DIS((C(GEC(&(S))))

=0

In particular, this impliesn,, := mc(n,0) < m, (Wheremc(n,d) is defined
in (12)). We now use the definition @fwith therq in (13).
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~ 9 mp—1 B
n < log, {% +2e ) P(Dfs(c«se@(e,a))))
=0
42 Tl .
< log, Tn +2ef > max {diam(G&c(ﬁ, 9); C), re(n, 5)}
=0

52
4m;,

i —1 3
< log, + ded (1 + Y diam(6Ec(, 5);@))

£=0

2 mp—1 B
< log, 47;” + 4ef <1 + Z diam(6Ec (¢, 5);@)) .
=0

LEMMA 8. Oneventfc s N Ec 5, under Conditiort, Vn € N,

min{ﬁc(mn,é),l} < ( 6) 0(d+1og(1/3)) ’

. (9(d log n-+log(1/4)) ) P ’

n

if v >1

for a finite constant (depending ok and p); under the additional ConditioR,
Vn € N,

min {é@(mn,é), 1} <c (M(}g(n/é)) G )

n
for a finite constant (depending om:, u, p, anda). o

PrROOF OFLEMMA 8. We begin with the first case (Conditidronly). We know

that fore € (0, 1),
dlog 2
welm,e) < Ky S8e
m

for some constank [see e.g.28]. Noting thatoc(m, e) < we(m, diam(e; C)),
we have thate > 0,

Uc(m, e, 0)
_ diam(e; C)dlog 7—2— i
<K (K\/ ( ) diam(é,C) n \/Sm(é)dzam(ce,((:) n sm(5)>

m m m

< K'max \/El/ﬂdlog % \/sm((s)el/fC sm ()
- m ’ m  om '
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m

propriate constank” > 0 (depending o and k), suffices to make this latter
quantity< {=. So we must have that

If s,,(6)/m < 1, then taking any > K” (w)m, for some ap-

dlogm—l—log(l/é))?f:—l

m

(17) min {€c(m,8),1} < KO (

for some constank (3). Plugging this into the query bountl®), we have that <
(18)

4 2 My —1 dl 1 1 K%
log, i’;n+4e9 (5+/1 max{ﬂ,1}(6K(3))i< og z + log( /5)>2 1dx).

xr
252 )
If x > 1, (18) is at mostK Wom2"~1 (dlogm,, + log(1/5))z-1, for some
constantx’ () (depending om: andy.). This implies

2k—1

o = KO ( " )
" 0(dlogn + log(1/4))/(2:-1) ’
for some constank (®). Plugging this into {7) completes the proof for this case.
On the other hand, i = 1, (18) is at mostK (%) §(d log m,, +log(1/6)) log m.,,
for some constank (®) (depending om). This implies

My > exp {K(7)\/9(d+ log(1/0)) 1} ’

for some constark (7). Plugging this into17) and simplifying the expression with
a bit of algebra completes this case.
For the bound under Conditid) again we have that

oc(m,e) < we(m,diam(e;C)) < a - max {,ul_Tp . m*1/2612;np, mfﬁ} .
From this, it quickly follows that
(19)

min{éc(m’ 6), 1}§ K(S)max{m_znfp—l, <log 5)2”1}§ K® (log 5)%“1

m m

for some constank ® (depending ony, «, p andx). Plugging this into the query
bound (6), we have that

1
4 2 mp—1 1 LN 2nto—1
n < log, % + 4ef) (5 + / max{ i, 1}(6K(8))% ( Oi 5) v dac)
1

- S
< K(9)9m§fizj (log Trdbn> 2ntp—1 ’
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for some constank () (depending om:, 1, a, andp). This implies

2k+p—1
2 -2
n Kk+p

my, > K

(10)
N 6 (log(n/8))"/ rte=1)

)

for some constank (19). Plugging this into 19) completes the proof of this case.
O

PROOF OFTHEOREM5 AND THEOREM 6. These theorems now follow from
Lemmas/ and8. O

B.2. Proofs Relating to Sectiorb.

LEMMA 9. Fori € N, letd; = 6/(2i%) andmy, = |Lin| + |Qin| (for i >
Vn/2, definel;, = Q;, = 0). For eachn, let i, denote the smallest index
satisfying the condition oh;,, in Step 3 of Algorithm 3. Let, = 27" and define

i —mln{zEN Vi' > i,Vj > i \Yh € Cy(r,),ere;, (h):O},
and

Ji = argminv; + E(C (Mjn, 6;).
JEN

o0
Then on the evenfl) Eg, s,,
i=1

Vn € N, max {zn,zn} < jx

—= Jn-*

<

PROOF OFLEMMA 9. As before, note that fof € N U {0} with ¢ < my,,

5(7? anngfl) denote the set§ andQ), respectively, at the conclusion of routidf
Algorithm 2, when run with clas§;, label budgetn/(2i?)], confidence parameter
0;, and threshold as irl().

Assume the evenf) Ec, s, occurs. Suppose, for the sake of contradiction, that

=1
Jj = j» < iy, for somen € N. Then there is someé> i — 1 such that, for some
{ < mjy, we have somé’ € Cix _1(7,) N C; [ng?] with

A, > N .
erg(h’) min erg(h) > ery(h) heg}g@)} ery(h)
D 5:£89y = 38¢.(4,6),

in

> 38¢, (£ U Q!
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where the last equality is due to Lemr@aLemmab implies this will not happen
fori =14} — 1, so we can assume> . We therefore have (by Lemnij that

o 3 ~
. / —_— o P o) J— . .
3Ec; (4, 0;) < ere(h') fILIé%l erg(h) < 5 max {’Tn + v 1 — v, Ec, (¢, 51)} .

i

In particular, this implies that

w

BQCZ(mmy(Sz) S 38(&(& 5Z> < % (Tn + Vi;—l - I/i) S “ (Tn + Vj - l/i) .

[\]

Therefore, (by definition of = ;)

A~

. 1 -
Ec; (Myn, 65) +vj < Ec;(Min, ;) + v < B (Tn +vj — Vi) + v < ?n + vj.

This would imply thaté@j (Myjn,05) < /2 < m%n (due to the second return
condition in Algorithm 2), which by definition is not possible, so we have a con
tradiction. Therefore, we must have that evgfy> <. In particular, we have that
Vn € N, hj;;n #* @,

Now pick an arbitrary € N with i > j = j*, and leth’ € C;(7,). Then
€L UQin (Mjn) = €7L4,UQin (hin) = €rm,, (Mjn) — €rm,, (hin)

< erm,, (hjn) — mglermn(h)

< 5 {er — v, &, (mm,él)} (by Lemmab)
3 R
§max{er ]n — Vj +V] Viyg(ci(mina(si)}
5 ’ erm]n — erm;, (W) + 1) + v — v
< om Ec m]n, + Vi — v (by Lemmab)
é mznv
é 7L7 ) .
=3 hax 4G (m; + iV (sincej > i)
2 Ec C; mzru
3. — .
= 58 (M, 9i) (by definition ofj;’)
%é (Ezn U an; 57,7 ['zn) (by Lemma6).
]
LEMMA 10. Onthe eventﬂ Ec,s,,Vn € N,
i=1
er(h%nn) — Voo < 31;%11{]1 (1/1' — Voo + Ec, (Miin, 51)) )
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PROOF OFLEMMA 10. Leth;, € Cjx(7,) for 7, € (0,27"), n € N. Suppose

the eventﬂ Ec, 5, occurs.
i=1

er(h%nn) — Voo

= Vjs — Voo + er(hZ o) — Vi
2(erm . (hinn) — €rmx, (hl) + )
Ec,. (Mjzns 5j)
2(6T£ *,nUQj;‘Ln(hgnn) - er[’j;‘LnUQj;n (h];;,n) + Tn)
Ec,. (Mzns 5j)
The first inequality follows from Lemma&. The second inequality is due to

Lemma9 (i.e.,j;: > max{i%,,}). In this last line, we can let, — 0, and use the
definition of,, combined with the fact that, < j, to show that it is at most

3. R
Vjx — Voo + Max {2 gz&cjﬁ (ﬁj;n U Qj;n, (Sj;; ﬁjmﬂ) s E(Cj;; (mj;;n, (5]';;)}

gyj;;—l/oo—i—max{

gyj;«l—l/oo—i—max{

= Vj; — Voo + 3E¢,. (Myjin, 0jz) (by Lemma6)
< 3min (y,- — Voo + &, (Min, 51»)) (by definition of;)
< 3min (Vi — Voo + é(CZ- (M, 51)) (by Lemmab).

O]

PROOF OFTHEOREM 7 AND THEOREM 8. These theorems now follow from
Lemmasl0 and8 That is, Lemmal0 gives a bound in terms of th& quantities,

holding on eventﬂ Ec, s5,» and Lemma bounds thesé quantities as desired, on
i=1

event ﬂ Hc, 5, N Ec, 5,. Noting that, by a union bound,

P [ﬂ He,5 N Ecs | 21=) 6i>1-36
=1 i=1
completes the proof. 0

DEFINITION 5. Defineé = ¢+ 1, D(¢) = lim diam(e; C;), and

J—00

Ue,(m.e.5:) = K (wncxm,f?(éem sm(8)D(ée) sm@))

m

m
and éci(m,é) 1nf{e >0:Vj € ZE,UC (m,27,6;) }



40 STEVE HANNEKE

LEMMA 11. Foranym,i € N,

Ec,(m, ;) < max {éci (m, 0;),v; — I/oo} .

PROOF OFLEMMA 11. Fore > v; — voo,

Uc,(m,e,6;) = K (chi(m,ée) + \/Sm((si)diam(ée;(ci) L Sm 51))

m m

<K (w(cz. (m, diam(ce; C;)) + sm(d;)diam(Ce; C;) I Sm(&)) .

m m

But diam(e; C;) < D(ée + (vi — vso)) < D(ée€), so the above line is at most

K (wci(m,lo)(ée))Jr sm(0:)D(¢e) | sm (%)

m m

) = Ug,(m, €, 6;).

In particular, this implies that

Ec,(m,8;) = nf{e >0:Vj € Z,Uc,(m,27,8;) < 4}
< 1nf{ (Vi —Voo) 1 Vj € Ze,U@.(m 2J ,0;) < 2j_4}
< mf{ V) € Ze,Ug,(m, 27,6;) < 23‘*4}
X

= ma {1nf{e>0 VJEZE,UC(m2 9i) <2 _4},(1/,-—1/00)}
= max{&ci(m,éi),ui—uoo}. O

PROOF OFTHEOREM 9. By the same argument that gave U%)( we have that

. i1 log (i
min{&ci(m, 0i), 1} < Kj di Ogm;; og(z/(S),

for some constank’; (depending omn).
Now assume the evefm;2, Hc, 5, N Ec, 5, occurs. In particular, Lemmak0
and11imply that for some constarit,, Vn € N,
er(hy) —v* < min {1 3min (Q(Ui —v')+ é(ci (M, 50)}
€N
d; log min, +log(i/d) })

Min

(20) < Ky min <(1/1 — ") 4+ min {1,

1€N
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Take anyi € N. The label request bound of Lemridaalong with Lemmall,
implies that

[n/(2i%)]

2 2 Min -] 1 :
< logy 8mgnz + K30 (5 + / max {Vi -V, o ngz o8(¢/9) } daz)
1

< Ky0; max {(v; — v*)mip, (d; log mj, + log(i/0)) log mn} .

Letting~;(n) = , this implies that

PO g (/9))

in {1, d;log myy, + log(i/9) }

Min
< min {1, K ((l/l — ')+ (dl(%(n) + ’yi(n)Q) + log (Z$> exp{—cyy,-(n)})}
< K ((Vi —v)+ (di + log ;) 65'329{—03%‘(71)}) .
Combined with 20), this establishes the result. O

APPENDIX C: ESTIMATORS IN ALGORITHM 1

As mentioned earlier, we can repldegR) andP(D1S(V')) in Algorithm 1 with
estimators based only amlabeleddata points, while preserving the rates in The-
orem4 up to constant factors. Here we briefly sketch the modifications to the proof
necessary to compensate for this additional estimation.

The estimators can be defined in a variety of ways. To be concrete heds-w

fine them based on Hoeffding’s inequality, lettidd,, = 512(?2“)6 In S0mL)”

Fm = 32(’”?—‘,—1)3 y ]P)m(DIS(V)) = Pm + MT:LI le\inf ]].D[S(V) (Xl/,m>’ and

Po(R) = Dy + Mt M 15 (Xi”m), where theX/,, are distributed i.i.d. ac-
cording toDy, independent from the data sequeriéq, Y1), (X2, Y2),... (per-
haps set aside in a preprocessing step). Replacing &ah ‘Algorithm 1 with
“P,,” (for the current value ofn in the algorithm), the analysis above can be
adapted to compensate as follows.

First, note that by Hoeffding’s inequality and a union bound, with probabil-
ity 1 — 4, everyP,,(DIS(V)) andP,,(R) calculated in the algorithm satisfies
B (DIS(V)) — 2Ty, < P(DIS(V)) < Bn(DIS(V)) andP,,(R) — 2T, <
P(R) < P,,(R); supposing this. — § probability event occurs, along with the
1 — ¢ probability event analogous to that in the original proof above (i.e., that
the U B and LB evaluations are valid), th; values remain valid bounds on the

achieved excess error rate. Also, at any time W) < 1/2, considerm’ <

’
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—In(1 —6/(2(m+1)%))/(2P(R)) < In(1 — §/(2(m + 1)2))/In(1 — P(R)); we
have(1—P(R))™ > 1-§/(2(m+1)?), so that with probabilitg —5/(2(m+1)?)
the nextm’ data points are not ifk. Thus, by a union bound, with probability
1 — ¢, at all times in the algorithm we havein{m’ > m : X, € R} —m >
—In(1 —6/(2(m + 1)?))/(2P(R)). Suppose this event also holds. In particular,
this implies the invariant that when calculatifitg, in Steps 2 and 9 fom > 0,

—In(1-6/(2(m+1)2
L = gy < =ity < PR)/S.

Now replace the2” in (4) with “4.” By the same reasoning as before}if!) =
0, we haveP(DIS(V)) < P(R)/4, so thatP,,(DIS(V)) < P(DIS(V)) +
oT', < P(DIS(V)) + P(R)/4 < P(R)/2 < P,,(R)/2, which satisfies the
condition in Step 2 on the next round. Propagating this changé(ih (5) be-
comesP(R)~1(4pu0)~" < 4G(|Q| — 1,5/n). Also, (6) becomeszm <

P,.(R) < P(R) + 2T, < 2P(R), so that we may simply replace each in (7)
by a “4,” and consequently the same is true 8f;(n (9) and @0), this changes
the “2” to “2” and the ‘6” to “12.” Finally, in addition to these adjustments to

(10), thelog, % factor in (L0) becomesogs 5 % and is explained as follows. When
the condition in Step 2 is satisfied for some P(DIS(V)) < P,,(DIS(V)) <
(1/2)P,n(R) < (1/2)P(R) + T, < (5/8)P(R), and thereforé(R) is reduced at
least by a factor 0of/8 every time we reach Step 3. In particular, after the algo-
rithm satisfies the condition in Step 2 at m#ﬂgw 4%} < logg/s 2 times, we are
guaranteed somg(and corresponding) satisfiess; < I@’m(R) <P(R)+2I,, <
(5/4)P(R) < e. This guarantees the stated excess error bound from Thebrem
(with the slightly adjusted constants indicated above), holding with probability at
leastl — 39.

APPENDIX D: A GENERAL MINIMAX LOWER BOUND

In this appendix, we prove a general minimax lower bound for nontr@iah-
der Conditionl, matching the result of Castro and Nowdld] for threshold clas-
sifiers (though stated in a slightly different form). The proof is essentiaitjlar
to that of Kaariainen R2], with modifications suited to these noise conditions.

For any hypothesis clags, and anyu, x € [1,00), let 7(C, u, k) denote the
set of distributiongD xy satisfying Conditiori for the hypothesis clags and the
specified parametefsandx. Also, letA denote the set of all valid active learning
algorithms (of the kind studied above, taking as input a budgetd a confidence
parameted, and returning a classifier after at masfabel requests).
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THEOREM10. For any hypothesis clas8 with |C| > 3, and anyu € [2,00)
andx € (1,00), there is ak-dependent constart € (0,00) such that, for any
0 € (0,1/16) and any integer. € N,

inf sup P(er(A(n,d)) —v > en"TmE) > 4.
AEA DYy €T (C i) ( (Aln, ) )

<

ProOOF. We proceed by reduction from hypothesis testing. Specifically, con-
sider two valuespy = 3 (1 - eK"T_l) andp, = 3 (1 + eNT_l), where we will
specify a value foe € (0, 1) later. Consider the problem of constructing an esti-
matori, (b1, ...,b,) € {0,1}, where eacly; € {0,1}. It is known [e.g.,10, 34]
that for anys € (0,1/16), if

(1—80)In g5

1) "= SKL (pollp1)

(for K L(pollp1) = poln £ + (1 — po)In }:z(l’), then for any such, estimator

(possibly including additional independent internal randomness), ilhecene; €

{0, 1} for which, if BY), e ) are i.i.d.Bernoulli(p;) random variables, then
(22) P(in(B",...,B{) #i) > 0.

Now returning to the active learning problem, we design the distribddigras
follows. Since|C| > 3, there existhy, h; € C andz,z’ € X such thathy(z) #
hi(z) andhg(z’) = hy(2). Supposéd < e < 1 — 27 we will specify a specific
value fore later. AssignDx ({z}) = ex, andDx({z'}) = 1 — ex. Note that

Dx({#'})>1-(1-27%)" >1-27% > e

Now fix 6 € (0,1/16), and suppose we have some active learning algorithm
We will construct an estimatar, based onA. Specifically, we start by randomly
sampling a sequenc&, X, ... i.i.d. according tadDy, to serve as the data se-
quence ford. Now we runA(n, §). Every X; is equal either or z’. For thet'®
label request made by the algorithm for soiie = z, we (in this case, playing
the role of the oracle) return as the label'df the valueh,, (x). The other label re-
quests are for the label of somg = 2/, and we returrh(z’) for these. In the end,
A returns a classifiel; based on this, defing (b, . .., b,) = 1[h(z) = hy(z)].

This simulated behavior fod to calculate, (B\”, . .., BY), whereB!” . ...

BY) are i.i.d.Bernoulli(p; ), is distributionally equivalent to runnind(n, §) under
a distributionDxy = D;, whereD; has marginalDx on X', and is otherwise
defined by the following property. FdtX,Y) ~ D;, P(Y = h;i(z)|X = z) =
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r—1

i (1 + eT), andP(Y = h;(2/)|X = 2’) = 1. Thus, for anyh’ with 1/ (x) #
hz(.%') andh’(:c’) = hi(l‘/), we have (fOrDXY = Dl)

(23)  er(h) —er(hy) = (er(W|{z}) — er(hil{z}))ex

= (; (l—i—e%l) —;(l—etl)) ex =€
in particular, this is true foh/ = h;_;. Since anyh’ with 1/(2’) # h;(2’) has
er(h') —er(h;) > 1— ex > ¢, we know that fore < v < 1 — ex, diam(~y;C) =
diam(e;C) = ex < ufy%. Furthermore, combining this witt28), we have that
anyh’ with eitherh/(x) # h;(x) or b/ (2') # hi(2') haser(h’) —er(h;) > €. Thus,
for0 <y < e diam(vy;C) =0 < ;w%. Finally, for1 — ex <~y<1,

1

K

1 \* 1
diam(y;C) <1 < ( 1> v < F|oaE < 29F <
1= (

1—e¢x

1—2—%)”

We therefore have tha?; € 7(C, p, x).

Now supposeiz’ is the returned value from running(n, ¢) with distribution
Dxy. As mentioned, for any given € {0,1}, if Dxy = D;, thenl[i/(z) =
hi(z)] is distributionally equivalent té,(B\”, ..., B for B", ... BY i.i.d.
Bernoulli(p;). The reasoning above also indicates thatiiary = D;,

P (er (ﬁ') —er(h;) > e) >P (iL,(l‘) # hz(x)>
=P (1F(2) = h(@)] #4) =P (in(B",..., BJ)) #1).

Therefore, by the aforementioned known results on hypothesis testiBgifooulli
means, fon as in 1),

par iy T (67 (F) v 2 €) 2y P (B B 1) > 6

Studying @1), and noting thaty € (0,1/2) = KL (%(1 -+ v)) <
21n(3)~2, we see that taking
e=(1-27%)(36n) 77 <1-27%

satisfies
1 2020 1 (1-80)Ings

moIn — < ——F——25.
36 85~ 8KL(pollp1)
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Although this is stated for the worst case over the distribufion,, including
the worst cas® x, we can extend the proof to most nontrivial fixeg:, only max-
imizing overDxy subject to the constraint that it has margifa}; specifically, it

suffices to havéx such thath, he € C with P(hy(X) # hao(X)) x n~z
[see20, 22]. Also, the same proof technique can be used to show an analogous
lower bound on the minimax rates for thgpectedtxcess error rate, as originally
studied by Castro and Nowalt3]. In fact, in that caseZl) and @2) clearly im-

ply a minimax lower boundxp{—(n)} for x = 1; for instance, lettin@>x be
concentrated entirely on a single pointusing a small constant label noise rate,
and setting = exp{—(n)}, for sufficiently largen it is necessary to identify the
optimal label forz with probability 1 — § to guarantee expected excess erxaf.
Finally, it is interesting to note that the same setup used in the above prooécan b
used to show a general minimax lower boundn "z for passive learnindgrom

m i.i.d. labeled data points; the proof is identical to that above, except to ndte tha
we expect onlyDx ({z})m = evm samples among Xy, ..., X,,} will equal z,

so that even passive algorithms takimg o e i, samples as input can be

. A . 2—2k . .
converted intai,, estimators based on onty o ¢ = Bernoulli samples (since

only the X; equal tox require a samplé%t(i) to generate a label).
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