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RATES OF CONVERGENCE IN ACTIVE LEARNING

BY STEVE HANNEKE

Carnegie Mellon University

We study the rates of convergence in generalization error achievable by
active learning under various types of label noise. Additionally, we studythe
general problem of model selection for active learning with a nested hierarchy
of hypothesis classes, and propose an algorithm whose error rate provably
converges to the best achievable error among classifiers in the hierarchy at
a rate adaptive to both the complexity of the optimal classifier and the noise
conditions. In particular, we state sufficient conditions for these rates to be
dramatically faster than those achievable by passive learning.

1. Introduction. Active learningrefers to a family of powerful supervised
learning protocols capable of producing more accurate classifiers while using a
smaller number of labeled data points than traditional (passive) learning methods.
Here we study a variant known aspool-basedactive learning, in which a learning
algorithm is given access to a large pool of unlabeled data (i.e., only the covariates
are visible), and is allowed to sequentially request the label (response variable)
of any particular data points from that pool. The objective is to learn a function
that accurately predicts the labels of new points, while minimizing the number
of label requests. Thus, this is a type of sequential design scenario fora function
estimation problem. This contrasts with passive learning, where the labeled data
are sampled at random. In comparison, by more carefully selecting which points
should be labeled, active learning can often significantly decrease the total amount
of effort required for data annotation. This can be particularly interesting for tasks
where unlabeled data are available in abundance, but label information comes only
through significant effort or cost.

Recently, there have been a series of exciting advances on the topic of active
learning with arbitrary classification noise (the so-calledagnosticPAC model [23]),
resulting in several new algorithms capable of achieving improved convergence
rates compared to passive learning under certain conditions. The first, proposed
by Balcan, Beygelzimer, and Langford [6] was theA2 (agnostic active) algorithm,
which provably never has significantly worse rates of convergence than passive
learning by empirical risk minimization. This algorithm was later analyzed in de-
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tail in [21], where it was found that a complexity measure called thedisagreement
coefficientcharacterizes the worst-case convergence rates achieved byA2 for any
given hypothesis class, data distribution, and best achievable error rate in the class.
The next major advance was by Dasgupta, Hsu, and Monteleoni [15], who pro-
posed a new algorithm, and proved that it improves the dependence of the conver-
gence rates on the disagreement coefficient compared toA2. Both algorithms are
defined below in Section3. While all of these advances are encouraging, they are
limited in two ways. First, the convergence rates that have been proven forthese
algorithms typically only improve the dependence on the magnitude of the noise
(more precisely, the noise rate of the hypothesis class), compared to passive learn-
ing. Thus, in an asymptotic sense, for nonzero noise rates these results represent at
best a constant factor improvement over passive learning. Second, these results are
limited to learning with a fixed hypothesis class of limited expressiveness, so that
convergence to the Bayes error rate is not always a possibility.

On the first of these limitations, recent work by Castro and Nowak [13] on learn-
ing threshold classifiers discovered that if certain parameters of the noisedistribu-
tion areknown(namely, parameters related to Tsybakov’s margin conditions), then
we can achieve strict improvements in the asymptotic convergence rate via a spe-
cific active learning algorithm designed to take advantage of that knowledge for
thresholds. Subsequently, Balcan, Broder, and Zhang [7] proved a similar result
for linear separators in higher dimensions, and Castro and Nowak [13] showed re-
lated improvements for the space of boundary fragment classes (under asomewhat
stronger assumption than Tsybakov’s). However, these works left open the question
of whether such improvements could be achieved by an algorithm that does not ex-
plicitly depend on the noise conditions (i.e., in theagnosticsetting), and whether
this type of improvement is achievable for more general families of hypothesis
classes, under the usual complexity restrictions (e.g., VC class, entropy conditions,
etc.). In a personal communication, John Langford and Rui Castro claimedA2

achieves these improvements for the special case of threshold classifiers(a spe-
cial case of this also appeared in [9]). However, there remained an open question
of whether such rate improvements could be generalized to hold for arbitrary hy-
pothesis classes. In Section4, we provide this generalization. We analyze the rates
achieved byA2 under Tsybakov’s noise conditions [27, 29]; in particular, we find
that these rates are strictly superior to the known rates for passive learning, when
the disagreement coefficient is finite. We also study a novel modification of the al-
gorithm of Dasgupta, Hsu, and Monteleoni [15], proving that it improves upon the
rates ofA2 in its dependence on the disagreement coefficient.

Additionally, in Section5, we address the second limitation by proposing a gen-
eral model selection procedure for active learning with an arbitrary structure of
nested hypothesis classes. If the classes have restricted expressiveness (e.g., VC
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classes), the error rate for this algorithm converges to the best achievable error by
any classifier in the structure, at a rate that adapts to the noise conditions and com-
plexity of the optimal classifier. In general, if the structure is constructed to include
arbitrarily good approximations to any classifier, the error converges to the Bayes
error rate in the limit. In particular, if the Bayes optimal classifier is in some class
within the structure, the algorithm performs nearly as well as running an agnos-
tic active learning algorithm on that single hypothesis class, thus preserving the
convergence rate improvements achievable for that class.

2. Definitions and Notation. In the active learning setting, there is anin-
stance spaceX , a label spaceY = {−1, +1}, and some fixed distributionDXY

over X × Y, with marginalDX over X . The restriction to binary classification
(Y = {−1, +1}) is intended to simplify the discussion; however, everything below
generalizes quite naturally to multiclass classification (whereY = {1, 2, . . . , k}).

There are two sequences of random variables:X1, X2, . . . andY1, Y2, . . ., where
each(Xi, Yi) pair is independent of the others, and has joint distributionDXY .
However, the learning algorithm is only permitted direct access to theXi values
(unlabeled data points), and must request theYi values one at a time, sequentially.
That is, the algorithm picks some indexi to observe theYi value, then after observ-
ing it, picks another indexi′ to observe theYi′ label value, etc. We are interested
in studying the rate of convergence of the error rate of the classifier output by
the learning algorithm, in terms of the number of label requests it has made. To
simplify the discussion, we will think of the data sequence as being essentially
inexhaustible, and will study(1 − δ)-confidence bounds on the error rate of the
classifier produced by an algorithm permitted to make at mostn label requests,
for a fixed valueδ ∈ (0, 1/2). The actual number of (unlabeled) data points the
algorithm uses will be made clear in the proofs (typically close to the number of
points needed by passive learning to achieve the stated error guarantee).

A hypothesis classC is any set of measurable classifiersh : X → Y. We will
denote byd the VC dimension ofC [see e.g.,12, 16, 31–33]. For any measurable
h : X → Y and distributionD overX ×Y, define theerror rateof h aserD(h) =
P(X,Y )∼D{h(X) 6= Y }; whenD = DXY , we abbreviate this aser(h). This simply
represents the risk under the0-1 loss. We also define theconditional error rate,
given a setR ⊆ X , aser(h|R) = P{h(X) 6= Y |X ∈ R}. Let ν = infh∈C er(h),
called thenoise rateof C. For anyx ∈ X , let η(x) = P{Y = 1|X = x}, let
h∗(x) = 21[η(x) ≥ 1/2] − 1, and letν∗ = er(h∗). We callh∗ theBayes optimal
classifier, andν∗ the Bayes error rate. Additionally, define thediameterof any
set of classifiersV asdiam(V ) = suph1,h2∈V P{h1(X) 6= h2(X)}, and for any
ǫ > 0, define the diameter of theǫ-minimal setof V asdiam(ǫ; V ) = diam({h ∈
V : er(h) − infh′∈V er(h′) ≤ ǫ}).
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For a classifierh, and a sequenceS = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∈
(X × Y)m, let erS(h) = 1

|S|

∑

(x,y)∈S 1[h(x) 6= y] denote theempirical er-

ror rate on S, (and defineer{}(h) = 0 by convention). It will often be con-
venient to make use of sets of (index, label) pairs, where the index is usedto
uniquely refer to an element of the{Xi} sequence (while conveniently also keep-
ing track of relative ordering information); in such contexts, we will overload no-
tation as follows. For a classifierh, and a finite set of (index, label) pairsS =
{(i1, y1), (i2, y2), . . . , (im, ym)} ⊂ N × Y, let erS(h) = 1

|S|

∑

(i,y)∈S
1[h(Xi) 6= y],

(ander{}(h) = 0, as before). Thus,erS(h)=erS′(h), whereS′={(Xi, y)}(i,y)∈S .
For the indexedtrue label sequence,Z(m) = {(1, Y1), (2, Y2), . . . , (m, Ym)}, we
abbreviate thiserm(h) = erZ(m)(h), the empirical error on the firstm data points.

In addition to the independent interest of understanding the rates achievable
here, another primary interest in this setting is to quantify the achievableimprove-
ments, compared topassive learning. In this context, a passive learning algorithm
can be formally defined as a function mapping the sequence{(X1, Y1), (X2, Y2),
. . . , (Xn, Yn)} to a classifier̂hn; for instance, perhaps the most widely studied
family of passive learning methods is that ofempirical risk minimization[e.g.,
24, 28, 31, 32], which return a classifier̂hn ∈ argminh∈C ern(h). For the purpose
of this comparison, we review known results on passive learning in several contexts
below.

2.1. Tsybakov’s Noise Conditions.Here we describe a particular parametriza-
tion of noise distributions, relative to a hypothesis class, often referred toas Tsy-
bakov’s noise conditions [27, 29], or margin conditions. These noise conditions
have recently received substantial attention in the passive learning literature, as
they describe situations in which the asymptotic minimax convergence rate of pas-
sive learning is faster than the worst casen−1/2 rate [e.g.,24, 27–29].

CONDITION 1. There exist finite constantsµ > 0 and κ ≥ 1, s.t.∀ǫ > 0,
diam(ǫ; C) ≤ µǫ

1
κ . ⋄

This condition is satisfied when, for example,

∃µ′ > 0, κ ≥ 1 s.t.∃h ∈ C : ∀h′ ∈ C, er(h′) − ν ≥ µ′
P{h(X) 6= h′(X)}κ

[24]. It is also satisfied when the Bayes optimal classifier is inC and

∃µ′′ > 0, α ∈ (0,∞) s.t.∀ǫ > 0, P{|η(X) − 1/2| ≤ ǫ} ≤ µ′′ǫα,

whereκ andµ are functions ofα andµ′′ [27, 29]; in particular,κ = (1 + α)/α.
As we will see, the case whereκ = 1 is particularly interesting; for instance,
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this is the case whenh∗ ∈ C andP{|η(X) − 1/2| > c} = 1 for some constant
c ∈ (0, 1/2). Informally, in many cases Condition1 can be realized in terms of the
relation between magnitude of noise and distance to the optimal decision boundary;
that is, since in practice the amount of noise in a data point’s label is often inversely
related to the distance from the decision boundary, a smallκ value may often result
from having low density near the decision boundary (i.e., large margin); when this
is not the case, the value ofκ is often determined by how quicklyη(x) changes asx
approaches the decision boundary. See [7, 13, 24, 27–29] for further interpretations
of this condition.

It is known that when this condition is satisfied for someκ ≥ 1 andµ > 0,
the passive learning method of empirical risk minimization achieves a convergence
rate guarantee, holding with probability≥ 1 − δ, of

er(argmin
h∈C

ern(h)) − ν ≤ c

(

d log n + log(1/δ)

n

)

κ
2κ−1

,

wherec is a (κ andµ -dependent) constant (this follows from [24, 28]; see Ap-
pendixB, especially (17) and Lemma5, for the details). Furthermore, for some
hypothesis classes, this is known to be a tight bound (up to the log factor) onthe
minimax convergence rate, so that there isno passive learning algorithm for these
classes for which we can guarantee a faster convergence rate, given that the guar-
antee depends onDXY only throughµ andκ [13, 29] (see also AppendixD).

2.2. Disagreement Coefficient.The disagreement coefficient, introduced in
[21], is a measure of the complexity of an active learning problem, which has
proven quite useful for analyzing the convergence rates of certain types of active
learning algorithms: for example, the algorithms of [6, 11, 14, 15]. Informally, it
quantifies how much disagreement there is among a set of classifiers relative to
how close to someh they are. The following is a version of its definition, which
we will use extensively below.

For any hypothesis classC andV ⊆ C, let

DIS(V ) = {x ∈ X : ∃h1, h2 ∈ V s.t.h1(x) 6= h2(x)}.

For r ∈ [0, 1] and measurableh : X → Y, let

B(h, r) = {h′ ∈ C : P{h(X) 6= h′(X)} ≤ r}.

DEFINITION 1. Thedisagreement coefficientof h with respect toC underDX

is defined as

θh = sup
r>r0

P(DIS(B(h, r)))

r
,

wherer0 = 0 (though see AppendixA.1for alternative possibilities forr0). ⋄
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DEFINITION 2. We further define the disagreement coefficient for the hypoth-
esis classC with respect to the target distributionDXY asθ = lim infk→∞ θh[k] ,
where{h[k]} is any sequence inC with er(h[k]) monotonically decreasing toν; (by
convention, take everyh[k] ∈ argmin

h∈C

er(h) if the minimum is achieved). ⋄

In Definition1, it is conceivable thatDIS(B(h, r)) may sometimes not be mea-
surable. In such cases, we can defineP(DIS(B(h, r))) as theoutermeasure [30],
so that it remains well defined. We continue this practice below, lettingP andE

(and indeed any reference to “probability”) refer to the outer expectation and mea-
sure in any context for which this is necessary.

Because of its simple intuitive interpretation, measuring the amount of disagree-
ment in a local neighborhood of some classifierh, the disagreement coefficient has
the wonderful property of being relatively simple to calculate for a wide range of
learning problems, especially when those problems have a natural geometricrep-
resentation. To illustrate this, we will go through a few simple examples from [21].

Consider the hypothesis class of thresholdshz on the interval[0, 1] (for z ∈
(0, 1)), wherehz(x) = +1 iff x ≥ z. Furthermore, supposeDX is uniform on
[0, 1]. In this case, it is clear that the disagreement coefficient is2, since for suffi-
ciently smallr, the region of disagreement ofB(hz, r) is [z − r, z + r), which has
probability mass2r. In other words, since the disagreement region grows withr in
two disjoint directions, each at rate1, we haveθhz = 2.

As a second example, consider the disagreement coefficient forintervals on
[0, 1]. As before, letX = [0, 1] andDX be uniform, but this timeC is the set
of intervalsh[a,b] such that forx ∈ [0, 1], h[a,b](x) = +1 iff x ∈ [a, b] (for
0 < a < b < 1). In contrast to thresholds, the disagreement coefficientsθh[a,b]

for the space of intervals vary widely depending on the particularh[a,b]. Specifi-

cally, we haveθh[a,b]
= max

{

1
b−a , 4

}

. To see this, note that when0 < r < b − a,

every interval inB(h[a,b], r) has its lower and upper boundaries withinr of a andb,
respectively; thus,P(DIS(B(h[a,b], r))) ≤ 4r, with equality for sufficiently small
r. However, whenr > b−a, everyinterval of width≤ r−(b−a) is in B(h[a,b], r),
so thatP(DIS(B(h[a,b], r))) = 1.

As a slightly more involved example, [21] studies the scenario whereX is the
surface of the origin-centered unit sphere inR

d for d > 2, C is the space of all
linear separators whose decision surface passes through the origin, andDX is the
uniform distribution onX ; in this case, it turns out∀h ∈ C the disagreement
coefficientθh satisfies

π

4

√
d ≤ θh ≤ π

√
d.

The disagreement coefficient has many interesting properties that can help to
bound its value for a given hypothesis class and distribution. We list a few elemen-
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tary properties below. Their proofs, which are quite short and follow directly from
the definition, are left as easy exercises.

LEMMA 1. [Close Marginals][21] Suppose∃λ ∈ (0, 1] s.t. for any measur-
able setA ⊆ X , λPDX

(A) ≤ PD′

X
(A) ≤ 1

λPDX
(A). Let h : X → Y be a

measurable classifier, and supposeθh andθ′h are the disagreement coefficients for
h with respect toC underDX andD′

X respectively. Then

λ2θh ≤ θ′h ≤ 1

λ2
θh. ⋄

LEMMA 2. [Finite Mixtures] Suppose∃α ∈ [0, 1] s.t. for any measurable set
A ⊆ X , PDX

(A) = αPD1(A) + (1 − α)PD2(A). For a measurableh : X → Y,

let θ
(1)
h be the disagreement coefficient with respect toC underD1, θ

(2)
h be the

disagreement coefficient with respect toC underD2, andθh be the disagreement
coefficient with respect toC underDX . Then

θh ≤ θ
(1)
h + θ

(2)
h . ⋄

LEMMA 3. [Finite Unions] Supposeh ∈ C1 ∩ C2 is a classifier s.t. the dis-
agreement coefficient with respect toC1 underDX is θ

(1)
h and with respect to

C2 underDX is θ
(2)
h . Then ifθh is the disagreement coefficient with respect to

C = C1 ∪ C2 underDX , we have that

max
{

θ
(1)
h , θ

(2)
h

}

≤ θh ≤ θ
(1)
h + θ

(2)
h .

In fact, even ifh /∈ C1 ∩ C2, we still haveθh ≤ θ
(1)
h + θ

(2)
h + 2. ⋄

See [8, 11, 15, 17, 21, 35] for further discussions of various uses of the dis-
agreement coefficient and related notions and extensions in active learning. In par-
ticular, Friedman [17] proves that any hypothesis class and distribution satisfying
certain general regularity conditions will admit finite constant bounds onθ. Also,
Wang [35] bounds the disagreement coefficient for certain nonparametric hypoth-
esis classes, characterized by smoothness of their decision surfaces.Additionally,
Beygelzimer, Dasgupta, and Langford [11] present an interesting analysis using a
natural extension of the disagreement coefficient to study active learning with a
larger family of loss functions beyond0-1 loss.

The disagreement coefficient has deep connections to several other quantities,
such as doubling dimension [26] and VC dimension [31]. Additionally, a related
quantity, referred to as the “capacity function,” was studied in the 80s by Alexander
in the passive learning literature, in the context of ratio-type empirical processes



8 STEVE HANNEKE

[2–4], and recently was further developed by Giné and Koltchinskii [18]; interest-
ingly, in this latter work, Gińe and Koltchinskii study a localized version of the
capacity function, which in our present context can essentially be viewedas the
functionτ(r) = P(DIS(B(h, r)))/r, so thatθh = supr>r0

τ(r).

3. General Algorithms. We begin the discussion of the algorithms we will
analyze by noting the underlying inspiration that unifies them. Specifically, at this
writing, all of the published general-purpose agnostic active learning algorithms
achieving nontrivial improvements are derivatives of a basic technique proposed
by Cohn, Atlas, and Ladner [14] for the realizable active learning problem. Under
the assumption that there exists a perfect classifier inC, they proposed an algorithm
which processes unlabeled data points in sequence, and for each one itdetermines
whether there is a classifier inC consistent with all previously observed labels that
predicts+1 for this new pointand one that predicts−1 for this new point; if so,
the algorithm requests the label, and otherwise it does not request the label; after
n label requests, the algorithm returns any classifier consistent with all observed
labels. In some sense, this algorithm corresponds to the very least we could expect
of an active learning algorithm, as it never requests the label of a point it can derive
from known information, but otherwise makes no effort to search for informative
data points. The idea is appealing, not only for its simplicity, but also for its ex-
tremely efficient use of unlabeled data; in fact, under the stated assumption,the
algorithm produces a classifier consistent with the labels ofall of the unlabeled
data it processes, including those it doesnot request the labels of.

We can equivalently think of this algorithm as maintaining two sets:V ⊆ C

is the set of candidate hypotheses still under consideration, andR = DIS(V ) is
their region of disagreement. We can then think of the algorithm as requestinga
random labeled point from the conditional distribution ofDXY given thatX ∈ R,
and subsequently removing fromV any classifier inconsistent with the observed
label. A formal definition of the algorithm is given as follows.

Algorithm 0
Input: hypothesis classC, label budgetn
Output: classifier̂hn ∈ C

0. V0 ← C, t ← 0
1. Form = 1, 2, . . .
2. If Xm ∈ DIS(Vt),
3. RequestYm

4. t ← t + 1
5. Vt ← {h ∈ Vt−1 : h(Xm) = Ym}
6. If t = n or {m′ > m : Xm′ ∈ DIS(Vt)} = ∅, Return anŷhn ∈ Vt
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The algorithms described below for the problem of active learning with label
noise each represent noise-robust variants of this basic idea. They work to reduce
the set of candidate hypotheses, while only requesting the labels of points inthe
region of disagreement of these candidates. The trick is to only remove a classifier
from the candidate set once we have high statistical confidence that it is worse
than some other candidate classifier so that we never remove the best classifier.
However, the two algorithms differ somewhat in the details of how that confidence
is calculated.

3.1. Algorithm 1. The first noise-robust algorithm we study, originally pro-
posed by Balcan, Beygelzimer, and Langford [6], is typically referred to asA2

for Agnostic Active. This was historically the first general-purpose agnostic active
learning algorithm shown to achieve improved error guarantees for certain learn-
ing problems in certain ranges ofn andν. Below is a variant of this algorithm.
It is defined in terms of two functions:UB andLB. These represent upper and
lower confidence bounds on the error rate of a classifier fromC with respect to
an arbitrary sampling distribution, as a function of a labeled sequence sampled ac-
cording to that distribution. Some steps in the algorithm require calculating certain
probabilities, such asP(DIS(V )) or P(R); later, we discuss replacing these with
appropriate estimators.

Algorithm 1
Input: hypothesis classC, label budgetn, confidenceδ, functionsUB andLB
Output: classifier̂hn

0. V ← C, R ← DIS(C), Q ← ∅, m ← 0
1. Fort = 1, 2, . . . , n
2. If P(DIS(V )) ≤ 1

2P(R)
3. R ← DIS(V ); Q ← ∅
4. If P(R) ≤ 2−n, Return anŷhn ∈ V
5. m ← min{m′ > m : Xm′ ∈ R}
6. RequestYm and letQ ← Q ∪ {(m, Ym)}
7. V ← {h ∈ V : LB(h, Q, δ/n) ≤ min

h′∈V
UB(h′, Q, δ/n)}

8. ht ← argmin
h∈V

UB(h, Q, δ/n)

9. βt ← (UB(ht, Q, δ/n) − min
h∈V

LB(h, Q, δ/n))P(R)

10. Return̂hn = ht̂, wheret̂ = argmin
t∈{1,2,...,n}

βt

The intuitive motivation behind the algorithm is the following. It focuses on re-
ducing the set of candidate hypothesesV , while being careful not to throw away
the best classifierh∗

C
= argminh∈C er(h) (supposing, for this informal expla-
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nation, thath∗
C

exists). Given that this is satisfied at any given time in the algo-
rithm, it makes sense to focus our samples to the regionDIS(V ), since a clas-
sifier h1 ∈ V has smaller error rate than another classifierh2 ∈ V if and only
if it has smaller conditional error rate givenDIS(V ). For this reason, on each
round, we seek to remove fromV any h for which our confidence bounds indi-
cate thater(h|DIS(V )) > er(h∗

C
|DIS(V )). However, so that we can make use

of known results for i.i.d. samples, we freeze the sampling regionR ⊇ DIS(V )
and collect an i.i.d. sample from the conditional given this region, updating the
region only when doing so allows us to further significantly focus the samples;
for this same reason, we also reset the collection of samplesQ every time we
update the regionR, so that it represents samples from the conditional givenR.
Finally, we maintain the valuesβt, which represent confidence upper bounds on
er(ht) − ν = (er(ht|R) − er(h∗

C
|R))P(R), and we return theht minimizing this

confidence bound; note that it does not suffice to returnhn, since the finalQ set
might be small.

As long as the confidence boundsUB andLB satisfy (overloading notation in
the natural way)

PZ∼Dm{∀h ∈ C, LB(h, Z, δ′) ≤ erD(h) ≤ UB(h, Z, δ′)} ≥ 1 − δ′

for any distributionD overX × Y and anyδ′ ∈ (0, 1), andUB andLB converge
to each other asm grows, it is known that a1− δ confidence bound oner(ĥn)− ν
converges to0 [6]. For instance, Balcan, Beygelzimer, and Langford [6] suggest
defining these functions based on classic results on uniform convergence rates in
passive learning [31], such as

UB(h, Q, δ′) = min{erQ(h) + G(|Q|, δ′), 1},(1)

LB(h, Q, δ′) = max{erQ(h) − G(|Q|, δ′), 0},

whereG(m, δ′) = 1
m +

√

ln 4
δ′

+d ln 2em
d

m for m ≥ d, and by conventionG(m, δ′) =

∞ for m < d. This choice ofUB andLB is motivated by the following lemma,
due to Vapnik [32].

LEMMA 4. For any distributionD overX×Y, and anyδ′ ∈ (0, 1) andm ∈ N,
with probability≥ 1 − δ′ over the draw ofZ ∼ Dm, everyh ∈ C satisfies

(2) |erZ(h) − erD(h)| ≤ G(m, δ′).

⋄

To avoid computational issues, instead of explicitly representing the setsV and
R, we may implicitly represent them as a set of constraints imposed by the condi-
tion in Step 7 of previous iterations. We may also replaceP(DIS(V )) andP(R)
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by estimates, since these quantities can be estimated to arbitrary precision with
arbitrarily high confidence using onlyunlabeleddata. Specifically, the conver-
gence rates proven below can be preserved up to constant factors byreplacing
these quantities with confidence bounds depending on a finite number of unlabeled
data points; for completeness, the details are given in AppendixC. As for the num-
ber of unlabeled data points required by the above algorithm itself, note thatif
P(DIS(V )) becomes small, it will use a large number of unlabeled data points;
however,P(DIS(V )) being small also indicateser(ĥn) − ν is small (and indeed
βt). In particular, to get an excess error rate ofǫ, the algorithm will generally re-
quire a number of unlabeled data points only polynomial in1/ǫ; also, the condition
in Step 4 guarantees the total number of unlabeled data points used by the algo-
rithm is bounded with high probability. For comparison, recall that passivelearning
typically requires a number oflabeleddata points polynomial in1/ǫ.

3.2. Algorithm 2. The second noise-robust algorithm we study was originally
proposed by Dasgupta, Hsu, and Monteleoni [15]. It uses a type of constrained
passive learning subroutine, LEARN, defined as follows for two sets of labeled data
points,L andQ.

LEARNC(L, Q) = argmin
h∈C:erL(h)=0

erQ(h).

By convention, if noh ∈ C haserL(h) = 0, LEARNC(L, Q) = ∅. The algorithm
is formally defined below, in terms of a sequence of estimators∆m, defined later.

Algorithm 2
Input: hypothesis classC, label budgetn, confidenceδ, functions∆m

Output: classifier̂hn, sets of (index, label) pairsL andQ

0.L ← ∅, Q ← ∅
1. Form = 1, 2, . . .
2. If |Q| = n or m > 2n, Returnĥn = LEARNC(L, Q) along withL andQ
3. For eachy ∈ {−1, +1}, let h(y) = LEARNC(L ∪ {(m, y)}, Q)
4. If somey hash(−y) = ∅ or

erL∪Q(h(−y)) − erL∪Q(h(y)) > ∆m−1(L, Q, h(y), h(−y), δ)
5. ThenL ← L ∪ {(m, y)}
6. Else Request the labelYm and letQ ← Q ∪ {(m, Ym)}
The algorithm maintains two sets of labeled data points:L andQ. The setQ

represents points of which we have requested the labels. The setL represents the
remaining points, and the labels of points inL are inferred. Specifically, suppose
(inductively) that at some timem we have that every(i, y) ∈ L hash∗

C
(Xi) = y,

whereh∗
C

= argminh∈C er(h) (supposing the min is achieved, for this informal
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motivation). At any point, we can be fairly confident thath∗
C

will have relatively
small empirical error rate. Thus, if all of the classifiersh with erL(h) = 0 and
h(Xm) = −y have relatively large empirical error rates compared to someh with
erL(h) = 0 andh(Xm) = y, we can confidently infer thath∗

C
(Xm) = y. Note that

this is not thetrue labelYm, but a sort of “denoised” version of it. Once we infer
this label, since we are already confident that this is theh∗

C
label, andh∗

C
is the

classifier we wish to compete with, we simply add this label as aconstraint: that
is, we require every classifier under consideration in the future to haveh(Xm) =
h∗

C
(Xm). This is how elements ofL are added. On the other hand, if we cannot

confidently inferh∗
C
(Xm), because some classifiers labeling opposite this also have

relatively small empirical error rates, then we simply request the labelYm and
add it to the setQ. Note that in order to make this comparison, we needed to be
able to calculate the differences of empirical error rates; however, as long as we
only consider the set of classifiersh that agreeon the labels inL, we will have
erL∪Q(h1) − erL∪Q(h2) = erm(h1) − erm(h2), for any two such classifiersh1

andh2, wherem = |L ∪ Q|.
The key to the above argument is carefully choosing a threshold for how large

the difference in empirical error rates needs to be before we can confidently in-
fer the label. For this purpose, Algorithm 2 is defined in terms of a function,
∆m(L, Q, h(y), h(−y), δ), representing a threshold for a type of hypothesis test.
This threshold must be set carefully, since the sequence of labeled data points cor-
responding toL∪Q is not actually an i.i.d. sample fromDXY . Dasgupta, Hsu, and
Monteleoni [15] suggest defining this function as

(3) ∆m(L, Q, h(y), h(−y), δ) = β2
m + βm

(

√

erL∪Q(h(y)) +
√

erL∪Q(h(−y))

)

,

whereβm =
√

4 ln(8m(m+1)S(C,2m)2/δ)
m andS(C, 2m) is the shatter coefficient

[e.g.,16, 32]; this suggestion is based on a confidence bound they derive, and they
prove the correctness of the algorithm with this definition, meaning that the1 − δ
confidence bound on its error rate converges toν asn → ∞. For now we will focus
on the first return value (the classifier), leaving the others for Section5, where they
will be useful for chaining multiple executions together.

4. Convergence Rates. In both of the above cases, one can prove guarantees
stating that neither algorithm’s convergence rates are ever significantly worse than
passive learning by empirical risk minimization [6, 15]. However, it is even more
interesting to discuss situations in which one can prove error rate guarantees for
these algorithms significantlybetter than those achievable by passive learning. In
this section, we begin by reviewing known results on these potential improvements,
stated in terms of the disagreement coefficient; we then proceed to discuss new
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results for Algorithm 1 and a novel variant of Algorithm 2, and describe the con-
vergence rates achieved by these methods in terms of the disagreement coefficient
and Tsybakov’s noise conditions.

To simplify the presentation, for the remainder of this paper we will restrict the
discussion to situations withθ > 0 (and thereforeC with d > 0 too). Handling the
extra case ofθ = 0 is a trivial matter, sinceθ = 0 would imply that any proper
learning algorithm achieves excess error0 for all values ofn.

4.1. The Disagreement Coefficient and Active Learning: Basic Results.Before
going into the results for general distributionsDXY onX ×Y, it will be instructive
to first look at the special case when the noise rate is zero. Understanding how the
disagreement coefficient enters into the analysis of this simpler case may aid in
digestion of the theorems and proofs for the general case presented later, where it
plays an essentially analogous role. Most of the major ingredients of the proofs for
the general case can be found in this special case, albeit in a much simpler form.
Although this result has not previously been published, the proof is essentially
analogous to (one case of) the analysis of Algorithm 1 in [21].

THEOREM 1. Let f ∈ C be such thater(f) = 0 and θf < ∞. ∀n ∈ N

andδ ∈ (0, 1), with probability≥ 1 − δ over the draw of the unlabeled data, the
classifierĥn returned by Algorithm 0 aftern label requests satisfies

er(ĥn) ≤ 2 · exp

{

− n

12θf (d ln (22θf ) + ln (3n/δ))

}

.

⋄

PROOF OFTHEOREM 1. As in the algorithm, letVt denote the set of classifiers
in C consistent with the firstt label requests. IfP(DIS(Vt)) > 0 for all values
of t in the algorithm, then with probability1 the algorithm uses alln label re-
quests. Technically, each claim below should be followed by the phrase, “unless
P(DIS(Vt)) = 0 for somet ≤ n, in which caseer(ĥn) = 0 so the bound triv-
ially holds.” However, to simplify the presentation, we will make this special case
implicit, and will not mention it further.

The high-level outline of this proof is to useP(DIS(Vt)) as an upper bound on
suph∈Vt

er(h), and then showP(DIS(Vt)) is halved roughly everyλ = Õ(θfd)

label requests. Thus, after roughlỹO(θfd log(1/ǫ)) label requests, anyh ∈ Vt

should haveer(h) ≤ ǫ.
Specifically, letλn = ⌈8θf (d ln(8eθf ) + ln(2n/δ))⌉. If n ≤ λn, the bound

in the theorem statement trivially holds, since the right side exceeds1; otherwise,
consider some non-negativet ≤ n−λn andt′ = t + λn. LetXmt denote the point
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corresponding to thetth label request, and letXmt′
denote the point corresponding

to label request numbert′. It must be that

|{Xmt+1, Xmt+2, . . . , Xmt′
} ∩ DIS(Vt)| ≥ λn,

which means there is an i.i.d. sample of sizeλn, with distribution equivalent to
the conditional ofX given {X ∈ DIS(Vt)}, contained in{Xmt+1, . . . , Xmt′

}:
namely, the firstλn points in this subsequence that are inDIS(Vt).

Now recall that, by classic results from the passive learning literature [e.g., 5],
this implies that on an eventEδ,t holding with probability1 − δ/n,

sup
h∈Vt′

er(h|DIS(Vt)) ≤ 2
d ln 2eλn

d + ln 2n
δ

λn
.

Also note thatλn was defined (with express purpose) so that

2
d ln 2eλn

d + ln 2n
δ

λn
≤ 1/(2θf ).

Recall that, sinceer(f) = 0, we haveer(h) = P(h(X) 6= f(X)). Sincef ∈ Vt′ ⊆
Vt, this means for anyh ∈ Vt′ we have{x : h(x) 6= f(x)} ⊆ DIS(Vt), and thus

sup
h∈Vt′

P(h(X) 6= f(X)) = sup
h∈Vt′

P(h(X) 6= f(X)|X ∈ DIS(Vt))P(DIS(Vt))

= sup
h∈Vt′

er(h|DIS(Vt))P(DIS(Vt)) ≤ P(DIS(Vt))/(2θf ).

SoVt′ ⊆ B(f, P(DIS(Vt))/(2θf )), and therefore by monotonicity ofP(DIS(·))
and the definition ofθf

P(DIS(Vt′)) ≤ P

(

DIS
(

B(f, P(DIS(Vt))/(2θf ))
)

)

≤ P(DIS(Vt))/2.

By a union bound,Eδ,t holds for everyt ∈ {iλn : i ∈ {0, 1, . . . , ⌊n/λn⌋−1}} with
probability≥ 1 − δ. On these events, ifn ≥ λn⌈log2(1/ǫ)⌉, then (by induction)

sup
h∈Vn

er(h) ≤ P(DIS(Vn)) ≤ ǫ.

Solving forǫ in terms ofn gives the result (with a slight increase in constants due
to relaxing the ceiling functions).
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4.2. Known Results on Convergence Rates for Agnostic Active Learning.We
will now describe the known results for agnostic active learning algorithms,start-
ing with Algorithm 1. The key to the potential convergence rate improvements of
Algorithm 1 is that, as the region of disagreementR decreases in measure, the
error differenceer(h|R) − er(h′|R) of any classifiersh, h′ ∈ V under thecondi-
tional sampling distribution (givenR) can become significantly larger (by a factor
of P(R)−1) thaner(h)− er(h′), making it significantly easier to determine which
of the two is worse using a sample of labeled data. In particular, [21] developed
a technique for analyzing this type of algorithm, and adapting that analysis to the
above definition of Algorithm 1 results in the following guarantee.

THEOREM 2. [21] Let ĥn be the classifier returned by Algorithm 1 when
allowed n label requests, using the bounds(1) and confidence parameterδ ∈
(0, 1/2). Then there exists a finite universal constantc such that, with probabil-
ity ≥ 1 − δ, ∀n ∈ N,

er(ĥn)−ν≤c

√

ν2θ2(d log n+log 1
δ ) log n+2νθ

νθ

n
+2exp

{

− n

cθ2
(

d log θ + log n
δ

)

}

.

⋄

Similarly, the key to improvements from Algorithm 2 is that as the numberm
of processed unlabeled data points increases, we only need to requestthe labels of
those data points in the region of disagreement of the set of classifiers with near-
optimal empirical error rates. Thus, if the region of disagreement of classifiers with
excess error≤ ǫ shrinks asǫ shrinks, we expect the frequency of label requests to
shrink asm increases. Since we are careful not to discard the best classifier, and
the excess error rate of a classifier can be bounded in terms of the∆m function,
we end up with a bound on the excess error which is converging inm, the number
of unlabeleddata points processed, even though we request a number of labels
growing slower thanm. When this situation occurs, we expect Algorithm 2 will
provide an improved convergence rate compared to passive learning. Dasgupta,
Hsu, and Monteleoni [15] prove the following convergence rate guarantee.

THEOREM 3. [15] Let ĥn be the classifier returned by Algorithm 2 when al-
lowed n label requests, using the threshold(3), and confidence parameterδ ∈
(0, 1/2). Then there exists a finite universal constantc such that, with probability
≥ 1 − δ, ∀n ∈ N,

er(ĥn)−ν≤c

√

ν2θ(d logn+2νθ
νθ + log 1

δ )

n
+c

(

d+log
1

δ

)

exp

{

−
√

n

cθ(d+log 1
δ )

}

.

⋄
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Note that, among other changes, this bound improves the dependence on thedis-
agreement coefficient,θ, compared to the bound for Algorithm 1. In both cases, for
certain ranges ofθ, ν, andn, these bounds can represent significant improvements
in the excess error guarantees, compared to the corresponding guarantees possi-
ble for passive learning. However, in both cases, whenν > 0 these bounds have
anasymptoticdependence onn of Θ̃(n−1/2), which is no better than the conver-
gence rates achievable by passive learning (e.g., by empirical risk minimization).
Thus, there remains the question of whether either algorithm can achieve asymp-
totic convergence rates strictly superior to passive learning for distributions with
nonzero noise rates. This is the topic we turn to next.

4.3. Active Learning under Tsybakov’s Noise Conditions.It is known that for
most nontrivialC, for anyn andν > 0, for every active learning algorithm there
is some distribution with noise rateν for which we can guarantee excess error
no better than∝ νn−1/2 [22]; that is, then−1/2 asymptotic dependence onn in
the above bounds matches the corresponding minimax rate, and thus cannotbe
improved as long as the bounds depend onDXY only via ν (andθ). Therefore,
if we hope to discover situations in which these algorithms have strictly superior
asymptotic dependence onn, we will need to allow the bounds to depend on a more
detailed description of the noise distribution than simply the noise rateν.

As previously mentioned, one way to describe a noise distribution using a more
detailed parametrization is to use Tsybakov’s noise conditions (Condition1). In the
context of passive learning, this allows one to describe situations in which the rate
of convergence is betweenn−1 andn−1/2, even whenν > 0. This raises the natural
question of how these active learning algorithms perform when the noise distribu-
tion satisfies this condition with finiteµ andκ parameter values. In many ways,
it seems active learning is particularly well-suited to exploit these more favorable
noise conditions, since they imply that as we eliminate suboptimal classifiers, the
diameter of the remaining set shrinks; thus, for finiteθ values, the region of dis-
agreement should also be shrinking, allowing us to focus the samples in a smaller
region and accelerate the convergence.

Focusing on the special case of learning one-dimensional threshold classifiers
under a certain uniform marginal distribution, Castro and Nowak [13] studied con-
ditions related to Condition1. In particular, they studied a threshold-learning al-
gorithm that, unlike the algorithms described here, takesκ as input, and found

its convergence rate to be∝
(

log n
n

) κ
2κ−2 whenκ > 1, andexp{−cn} for some

(µ-dependent) constantc, whenκ = 1. Note that this improves over then− κ
2κ−1

rates achievable in passive learning [13, 29]. Subsequently, Balcan, Broder, and
Zhang [7] proved an analogous positive result for higher-dimensional linear sepa-
rators, and Castro and Nowak [13] additionally showed a related result for bound-
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ary fragment classes (see below); in both cases, the algorithm dependsexplicitly
on the noise parameters. Later, in a personal communication, Langford and Cas-
tro claimed that in fact Algorithm 1 achieves this rate (up to log factors) for the
one-dimensional thresholds problem, leading to speculation that perhaps these im-
provements are achievable in the general case as well (under conditionson the dis-
agreement coefficient). Castro and Nowak [13] also prove that a value∝ n− κ

2κ−2

(or exp{−c′n}, for somec′, whenκ = 1) is also alower boundon the minimax
rate for the threshold learning problem. In fact, a similar proof to theirs can be
used to show this same lower bound holds for any nontrivialC. For completeness,
a proof of this more general result is included in AppendixD.

Other than the few specific results mentioned above, it was not previously known
whether Algorithm 1 or Algorithm 2, or indeedanyactive learning algorithm, gen-
erally achieves convergence rates that exhibit these types of improvements.

4.4. Adaptive Rates in Active Learning: Algorithm 1.The above observations
open the question of whether these algorithms, or variants thereof, improvethis
asymptotic dependence onn. It turns out this is indeed possible. Specifically, we
have the following result for Algorithm 1.

THEOREM 4. Let ĥn be the classifier returned by Algorithm 1 when allowed
n label requests, using the bounds(1) and confidence parameterδ ∈ (0, 1/2).
Suppose further thatDXY satisfies Condition1. Then there exists a finite (κ- and
µ-dependent) constantc such that, for anyn ∈ N, with probability≥ 1 − δ,

er(ĥn) − ν ≤






2 · exp
{

− n
cθ2(d log n+log(1/δ))

}

, whenκ = 1

c
(

θ2(d log n+log(1/δ)) log n
n

)
κ

2κ−2
, whenκ > 1

.

⋄

PROOF OFTHEOREM 4. We will proceed by bounding thelabel complexity, or
size of the label budgetn that is sufficient to guarantee, with high probability, that
the excess error of the returned classifier will be at mostǫ (for arbitraryǫ > 0);
with this in hand, we can simply bound the inverse of the function to get the result
in terms of a bound on excess error.

Throughout this proof (and proofs of later results in this paper), we willmake
frequent use of basic facts abouter(h|R). In particular, for any classifiersh, h′ and
setR ⊆ X , we haveer(h) = er(h|R)P(R) + er(h|X \ R)P(X \ R); also, if
{x : h(x) 6= h′(x)} ⊆ R, we haveer(h|X \R)− er(h′|X \R) = 0 and therefore
er(h) − er(h′) = (er(h|R) − er(h′|R))P(R).

Note that, by Lemma4 and a union bound, on an event of probability1 − δ, (2)
holds withδ′ = δ/n for every setQ, relative to the conditional distribution given its
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respectiveR set, for any value ofn. For the remainder of this proof, we assume that
this 1 − δ probability event occurs. In particular, this means that for everyh ∈ C

and everyQ set in the algorithm,LB(h, Q, δ/n) ≤ er(h|R) ≤ UB(h, Q, δ/n),
for the setR thatQ is sampled under.

Our first task is to show that we never remove the “good” classifiers fromV .
We only remove a classifierh from V if h′ = argminh′∈V UB(h′, Q, δ/n) has
LB(h, Q, δ/n) > UB(h′, Q, δ/n). Eachh ∈ V has{x : h(x) 6= h′(x)} ⊆
DIS(V ) ⊆ R, so that

UB(h′, Q, δ/n) − LB(h, Q, δ/n) ≥ er(h′|R) − er(h|R) =
er(h′) − er(h)

P(R)
.

Thus, for anyh ∈ V with er(h) ≤ er(h′), UB(h′, Q, δ/n) − LB(h, Q, δ/n) ≥
er(h′|R) − er(h|R) = (er(h′) − er(h))/P(R) ≥ 0, so that on any given round
of the algorithm, the set{h ∈ V : er(h) ≤ er(h′)} is not removed fromV . In
particular, since we always haveer(h′) ≥ ν, by induction this implies the invariant
infh∈V er(h) = ν, and therefore also

∀t, er(ht) − ν = er(ht) − inf
h∈V

er(h) = (er(ht|R) − inf
h∈V

er(h|R))P(R) ≤ βt,

where again the second equality is due to the fact that∀h ∈ V , {x : ht(x) 6= h(x)}
⊆ DIS(V ) ⊆ R. We will spend the remainder of the proof bounding the size
of n sufficient to guarantee someβt ≤ ǫ. In particular, similar to the proof of
Theorem1, we will see that as long asβt > ǫ, we will halveP(DIS(V )) roughly

everyÕ
(

θ2dǫ
2
κ
−2

)

label requests, so that the total number of label requests before

someβt ≤ ǫ is at most roughlỹO
(

θ2dǫ
2
κ
−2 log(1/ǫ)

)

.

Recalling the definition ofh[k] (from Definition2), let

(4) V (θ) =

{

h ∈ V : lim sup
k→∞

P(h(X) 6= h[k](X)) >
P(R)

2θ

}

.

Note that after Step 7, ifV (θ) = ∅, then
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P(DIS(V ))

≤ P

(

DIS

({

h ∈ C : lim sup
k→∞

P

(

h(X) 6= h[k](X)
)

≤ P(R)/(2θ)

}))

= lim
k′→∞

P



DIS





⋂

k>k′

B
(

h[k], P(R)/(2θ)
)









≤ lim
k′→∞

P





⋂

k>k′

DIS
(

B
(

h[k], P(R)/(2θ)
))





≤ lim inf
k→∞

P

(

DIS
(

B(h[k], P(R)/(2θ))
))

≤ lim inf
k→∞

θh[k]

P(R)

2θ
=

P(R)

2
,

so that we will satisfy the condition in Step 2 on the next round. Here we haveused
the definition ofθ in the final inequality and equality. On the other hand, if after
Step 7, we haveV (θ) 6= ∅, then

∅ 6=
{

h ∈ V : lim sup
k→∞

P(h(X) 6= h[k](X)) >
P(R)

2θ

}

=











h ∈ V :







lim sup
k→∞

P(h(X) 6= h[k](X))

µ







κ

>

(

P(R)

2µθ

)κ











⊆
{

h ∈ V :

(

diam(er(h) − ν; C)

µ

)κ

>

(

P(R)

2µθ

)κ}

⊆
{

h ∈ V : er(h) − ν >

(

P(R)

2µθ

)κ}

=

{

h ∈ V : er(h|R) − inf
h′∈V

er(h′|R) > P(R)κ−1(2µθ)−κ
}

⊆
{

h ∈ V : UB(h, Q, δ/n) − min
h′∈V

LB(h′, Q, δ/n) > P(R)κ−1(2µθ)−κ
}

⊆
{

h ∈ V : LB(h, Q, δ/n) − min
h′∈V

UB(h′, Q, δ/n)

> P(R)κ−1(2µθ)−κ − 4G(|Q|, δ/n)

}

.

Here, the third line follows from the fact thater(h[k]) ≤ er(h) for all sufficiently
largek, the fourth line follows from Condition1, and the final line follows from
the definition ofUB andLB. By definition, everyh ∈ V hasLB(h, Q, δ/n) ≤
minh′∈V UB(h′, Q, δ/n), so for this last set to be nonempty after Step 7, we must
haveP(R)κ−1(2µθ)−κ < 4G(|Q|, δ/n).
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Combining these two cases (V (θ) = ∅ andV (θ) 6= ∅), since|Q| gets reset to0
upon reaching Step 3, we have that after every execution of Step 7,

(5) P(R)κ−1(2µθ)−κ < 4G(|Q| − 1, δ/n).

If P(R) ≤ ǫ
2G(|Q|−1,δ/n) ≤ ǫ

2G(|Q|,δ/n) , then certainlyβt ≤ ǫ (by definition of
βt ≤ 2G(|Q|, δ/n)P(R)). So on any round for whichβt > ǫ, we must have

(6)
ǫ

2G(|Q| − 1, δ/n)
< P(R).

Combining (5) and (6), on any round for whichβt > ǫ,

(7)
(

ǫ

2G(|Q| − 1, δ/n)

)κ−1

(2µθ)−κ < 4G(|Q| − 1, δ/n).

Solving forG(|Q| − 1, δ/n) reveals that whenβt > ǫ,

(8) 4−1/κ
(

ǫ

2

)
κ−1

κ

(2µθ)−1 < G(|Q| − 1, δ/n).

Basic algebra shows that whenn ≥ |Q| > d, we have

G(|Q| − 1, δ/n) ≤ 3

√

ln 4
δ + (d + 1) ln(n)

|Q| .

Combining this with (8), solving for|Q|, and addingd to handle the case|Q| ≤ d,
we have that on any round for whichβt > ǫ,

(9) |Q| ≤
(

2

ǫ

)
2κ−2

κ

(6µθ)242/κ
(

ln
4

δ
+ (d + 1) ln(n)

)

+ d.

Sinceβt ≤ P(R) by definition, andP(R) is at least halved each time we reach Step
3, we need to reach Step 3 at most⌈log2(1/ǫ)⌉ times before we are guaranteed
someβt ≤ ǫ. Thus, any

(10) n ≥ 1 +

(

(

2

ǫ

)
2κ−2

κ

(6µθ)242/κ
(

ln
4

δ
+ (d + 1) ln(n)

)

+ d

)

log2

2

ǫ

suffices to guarantee either some|Q| exceeds (9) or we reach Step 3 at least
⌈log2(1/ǫ)⌉ times, either of which implies the existence of someβt ≤ ǫ. The
stated result now follows by basic inequalities to bound the smallest value ofǫ
satisfying (10) for a given value ofn.
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If the disagreement coefficient is finite, Theorem4 can often represent a sig-
nificant improvement in convergence rate compared to passive learning,where we
typically expect rates of ordern−κ/(2κ−1) [13, 27, 29]; this gap is especially no-
table when the disagreement coefficient andκ are small. Furthermore, the bound
matches (up to logarithmic factors) the form of the minimax ratelower bound
proved by Castro and Nowak [13] for threshold classifiers (whereθ = 2); as
mentioned, that lower bound proof can be generalized to any nontrivialC (see
Appendix D), so that the rate of Theorem4 is nearly minimax optimal for any
nontrivialC with boundeddisagreement coefficients. Also note that, unlike the up-
per bound analysis of Castro and Nowak [13], we do not require the algorithm to
be given any extra information about the noise distribution, so that this result is
somewhat stronger; it is also more general, as this bound applies to an arbitrary
hypothesis class.

A refined analysis and minor tweaks to the algorithm should be able to reduce
the log factors in this result. For instance, defining UB and LB using the uniform
convergence bounds of Alexander [1], and using a slightly more complicated al-
gorithm closer to the original definition [6, 21] – taking multiple samples between
bound evaluations, allowing a larger confidence argument to the UB and LBeval-
uations – thelog2 n factor should reduce at least tolog n log log n, if not further.
Also, as previously mentioned, it is possible to replace the quantitiesP(R) and
P(DIS(V )) in Algorithm 1 with estimators of these quantities based on a finite
sample of unlabeled data points, while preserving the results of Theorem4 up to
constant factors. For completeness, we provide an example of such estimators in
AppendixC, along with a sketch of how the proof of Theorem4 can be modified
to compensate for using these estimated probabilities.

4.5. Adaptive Rates in Active Learning: Algorithm 2.Note that, as before,n
gets divided byθ2 in the rates achieved by Algorithm 1. As before, it is not clear
whether any modification to the definitions ofUB andLB can reduce this ex-
ponent onθ from 2 to 1. As such, it is natural to investigate the rates achieved
by Algorithm 2 under Condition1; we know that it does improve the dependence
on θ for the worst case rates over distributions with any given noise rate, so we
might hope that it does the same for the rates over distributions with any given
values ofµ andκ. Unfortunately, we do not presently know whether the original
definition of Algorithm 2 achieves this improvement. However, we now present a
slight modification of the algorithm, and prove that it does indeed provide the de-
sired improvement in dependence onθ, while maintaining the improvements in the
asymptotic dependence onn. Specifically, consider the following definition for the
threshold in Algorithm 2.

(11) ∆m(L, Q, h(y), h(−y), δ) = 3ÊC(L ∪ Q, δ;L),
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whereÊC(·, ·; ·) is defined in AppendixA, based on a notion of local Rademacher
complexity studied by Koltchinskii [24]. In particular, the quantitŷEC is known to
be adaptive to Tsybakov’s noise conditions, in the sense that more favorable noise
conditions yield smaller values of̂EC. Using this definition, we have the following
theorem; its proof is included in AppendixB.

THEOREM5. Supposêhn is the classifier returned by Algorithm 2 with thresh-
old as in (11), when allowedn label requests and given confidence parameter
δ ∈ (0, 1/2). Suppose further thatDXY satisfies Condition1 with finite parameter
valuesκ andµ. Then there exists a finite (κ andµ -dependent) constantc such that,
with probability≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν ≤











c
(

d + log 1
δ

)

· exp

{

−
√

n
cθ(d+log(1/δ))

}

, whenκ = 1

c
(

θ(d log n+log(1/δ))
n

)
κ

2κ−2 , whenκ > 1
.

⋄

Note that this does indeed improve the dependence onθ, reducing its exponent
from 2 to 1; we do lose some in that there is now a square root in the exponent of
theκ = 1 case; however, as with Theorem4, it is likely that slight refinements to
the definition of∆m would reduce this (though we may also need to weaken the
theorem statement to hold for any singlen, rather than simultaneously for alln).

The bound in Theorem5 is stated in terms of the VC dimensiond. However, for
certain nonparametric hypothesis classes, it is sometimes preferable to quantify the
complexity of the class in terms of a constraint on theentropyof the class, relative
to the distributionDXY [see e.g.,13, 24, 29, 30]. Specifically, forǫ ∈ [0, 1], define

ωC(m, ǫ) = E sup
h1,h2∈C:

P{h1(X) 6=h2(X)}≤ǫ

|(er(h1) − erm(h1)) − (er(h2) − erm(h2))|.

CONDITION 2. There exist finite constantsα > 0 andρ ∈ (0, 1) s.t.∀m ∈ N

andǫ ∈ [0, 1], ωC(m, ǫ) ≤ α · max
{

ǫ
1−ρ
2 m−1/2, m

− 1
1+ρ

}

. ⋄

In particular, the entropy with bracketing condition used in the original mini-
max analysis of Tsybakov [29] implies Condition2 [24], as does the analogous
condition for random entropy [18, 19, 25]. In passive learning, it is known that em-
pirical risk minimization achieves a rate of ordern−κ/(2κ+ρ−1) under Conditions1
and2 [24, 25] (see also AppendixB, especially (19) and Lemma5), and that this is
sometimes minimax optimal [29]. The following theorem gives a bound on the rate
of convergence of the same version of Algorithm 2 as in Theorem5, this time in
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terms of the entropy condition which, as before, is faster than the passivelearning
rate when the disagreement coefficient is finite. The proof of this result isincluded
in AppendixB.

THEOREM6. Supposêhn is the classifier returned by Algorithm 2 with thresh-
old as in (11), when allowedn label requests and given confidence parameter
δ ∈ (0, 1/2). Suppose further thatDXY satisfies Condition1 with finite parameter
valuesκ andµ, and Condition2 with parameter valuesα andρ. Then there exists
a finite (κ, µ, α andρ -dependent) constantc such that, with probability≥ 1 − δ,
∀n ∈ N,

er(ĥn) − ν ≤ c

(

θ log(n/δ)

n

)

κ
2κ+ρ−2

.

⋄

Again, it is likely that refinements to the∆m definition may lead to improve-
ments in the log factor. Also, although this result is stated for Algorithm 2, it is
conceivable that, by modifying Algorithm 1 to use definitions ofV andβt based
on ÊC(Q, δ; ∅), an analogous result might be possible for Algorithm 1 as well.

It is worth mentioning that Castro and Nowak [13] proved a minimax lower
bound for the hypothesis class ofboundary fragments, with an exponent having a
similar dependence on related definitions ofκ andρ parameters to that of Theo-
rem6. Their result does provide a valid lower bound here; however, it is notclear
whether their lower bound, Theorem6, both, or neither is tight in the present con-
text, since the value ofθ is not presently known for that particular problem, and
the matching upper bound of [13] was proven under a stronger restriction on the
noise than Condition1. However, see [35] for an analysis of the disagreement co-
efficient for other nonparametric hypothesis classes, characterized by smoothness
of the decision surface.

5. Model Selection. While the previous sections address adaptation to the
noise distribution, they are still restrictive in that they deal with hypothesis classes
of limited expressiveness. That is, the assumption of finite VC dimension implies a
strong restriction on the variety of classifiers one can represent (or approximate) in
the class; the entropy conditions allow slightly more flexibility, but under nontrivial
distributions, even the entropy conditions imply a significant restriction on the ex-
pressiveness of the class. Thus, for algorithms restricted to classifiersfrom such a
restricted hypothesis class, it is often unrealistic to expect convergenceto the Bayes
error rate. We address this issue in this section by developing a general algorithm
for learning with a sequence of nested hypothesis classes of increasingcomplexity,
similar to the setting of Structural Risk Minimization in passive learning [31]. The
objective is to adapt, not only to the noise conditions, but also to the complexity of
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the optimal classifier. The starting point for this discussion is the assumption ofa
structure onC, in the form of a sequence of nested hypothesis classes:

C1 ⊂ C2 ⊂ · · ·

Each class has an associated noise rateνi = infh∈Ci
er(h), and we defineν∞ =

limi→∞ νi. We also letθi anddi be the disagreement coefficient and VC dimen-
sion, respectively, for the setCi. We are interested in an algorithm that guarantees
convergence in probability of the error rate toν∞. We are particularly interested in
situations whereν∞ = ν∗, a condition which is realistic in this setting since the
setsCi can be defined so that it is always satisfied, even while maintaining each
di < ∞ [see e.g.,16]. Additionally, if we are so lucky as to have someνi = ν∗,
then we would like the convergence rate achieved by the algorithm to be not sig-
nificantly worse than running one of the above agnostic active learning algorithms
with hypothesis classCi alone. In this context, we can define a structure-dependent
version of Tsybakov’s noise condition as follows.

CONDITION 3. For some nonemptyI ⊆ N, for eachi ∈ I, there exist finite

constantsµi > 0 andκi ≥ 1, such that∀ǫ > 0, diam(ǫ; Ci) ≤ µiǫ
1
κi . ⋄

Note that we do not require everyCi, i ∈ N, to have finiteµi andκi, only some
nonempty setI ⊆ N; this is important, since we might not expectCi to satisfy
Condition1 for small indicesi, where the expressiveness is quite restricted.

In passive learning, there are several methods for this type of model selec-
tion which are known to preserve the convergence rates of each classCi under
Condition3 [e.g.,24, 29]. In particular, Koltchinskii [24] develops a method that
performs this type of model selection; it turns out we can modify Koltchinskii’s
method to suit our present needs in the context of active learning; this results in
a general active learning model selection method that preserves the typesof im-
proved rates discussed in the previous section. This modification is presented be-
low, based on using Algorithm 2 as a subroutine. (It should also be possible to
define an analogous method that uses Algorithm 1 as a subroutine instead.)
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Algorithm 3
Input: nested sequence of classes{Ci}, label budgetn, confidence parameterδ
Output: classifier̂hn

0. Fori = ⌊
√

n/2⌋, ⌊
√

n/2⌋ − 1, ⌊
√

n/2⌋ − 2, . . . , 1
1. LetLin andQin be the sets returned by Algorithm 2 run withCi and the

threshold (11), allowing⌊n/(2i2)⌋ label requests, and confidenceδ/(2i2)
2. Lethin ← LEARNCi

(∪j≥iLjn, Qin)
3. If hin 6= ∅ and∀j s.t.i < j ≤ ⌊

√

n/2⌋,
erLjn∪Qjn

(hin) − erLjn∪Qjn
(hjn) ≤ 3

2 ÊCj
(Ljn ∪ Qjn, δ/(2j2);Ljn)

4. ĥn ← hin

5. Return̂hn

The functionÊ·(·, ·; ·) is defined in AppendixA. This method can be shown to
have a confidence bound on its error rate converging toν∞ at a rate never sig-
nificantly worse than the original passive learning method of Koltchinskii [24], as
desired. Additionally, we have the following guarantee on the rate of convergence
under Condition3. The proof is similar in style to Koltchinskii’s original proof,
though some care is needed due to the altered sampling distribution and the con-
straint setLjn. The proof is included in AppendixB.

THEOREM 7. Supposêhn is the classifier returned by Algorithm 3, when al-
lowedn label requests and confidence parameterδ ∈ (0, 1/2). Suppose further
thatDXY satisfies Condition3. Then there exist finite (κi andµi -dependent) con-
stantsci such that, with probability≥ 1 − δ, ∀n ∈ N,

er(ĥn)−ν∞ ≤ 3min
i∈I

(νi−ν∞)+















ci

(

di+log 1
δ

)

·exp

{

−
√

n
ciθi(di+log 1

δ
)

}

, if κi =1

ci

(

θi(di log n+log 1
δ
)

n

)

κi
2κi−2

, if κi >1

.

⋄

In particular, if we are so lucky as to haveνi = ν∗ for some finitei, then the
above algorithm achieves a convergence rate not significantly worse than that guar-
anteed by Theorem5 for applying Algorithm 2 directly, with hypothesis classCi.
Note that the algorithm itself has no dependence on the setI, nor has it any depen-
dence on each class’s complexity parametersdi, κi, µi, θi; the adaptive behavior
of the data-dependent boundÊCj

allows the algorithm to adaptively ignore the re-
turned classifier from the runs of Algorithm 2 for which convergence is slow, thus
automatically selecting an index for which the error rate is relatively small.
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As in the previous section, we can also show a variant of this result when the
complexities are quantified in terms of the entropy. Specifically, consider the fol-
lowing condition and theorem; the proof is in AppendixB. Again, this represents
an improvement over known results for passive learning when the disagreement
coefficients are finite.

CONDITION 4. For eachi ∈ N, there exist finite constantsαi > 0, ρi ∈ (0, 1)

s.t.∀m ∈ N andǫ ∈ [0, 1], ωCi
(m, ǫ) ≤ αi · max

{

ǫ
1−ρi

2 m−1/2, m
− 1

1+ρi

}

. ⋄

THEOREM 8. Supposêhn is the classifier returned by Algorithm 3, when al-
lowedn label requests and confidence parameterδ ∈ (0, 1/2). Suppose further
that DXY satisfies Conditions3 and 4. Then there exist finite (κi, µi, αi and ρi

-dependent) constantsci such that, with probability≥ 1 − δ, ∀n ∈ N,

er(ĥn) − ν∞ ≤ 3 min
i∈I

(νi − ν∞) + ci

(

θi log(n/δ)

n

)

κi
2κi+ρi−2

.

⋄

In addition to these theorems for this structure-dependent version of Tsybakov’s
noise conditions, we also have the following result for a structure-independent
noise condition, in the sense that the noise condition does not depend on thepar-
ticular choice ofCi sets, but only on the distributionDXY (and in some sense, the
full classC =

⋃

i Ci); it may be particularly useful when the classC is universal,
in the sense that it can approximate any classifier.

THEOREM9. Suppose the sequence{Ci} is constructed so thatν∞ = ν∗, and
ĥn is the classifier returned by Algorithm 3, when allowedn label requests and
confidence parameterδ ∈ (0, 1/2). Suppose that there exists a constantµ > 0 s.t.
for all measurableh : X → Y, er(h) − ν∗ ≥ µP{h(X) 6= h∗(X)}. Then there
exists a finite (µ-dependent) constantc such that, with probability≥ 1−δ, ∀n ∈ N,

er(ĥn) − ν∗ ≤ c min
i∈N

(νi − ν∗) +

(

di + log
i

δ

)

· exp

{

−
√

n

ci2θi(di+log(i/δ))

}

.

⋄

The conditionν∞ = ν∗ is quite easy to satisfy: for examples,Ci could be
axis-aligned decision trees of depthi, or thresholded polynomials of degreei, or
multi-layer neural networks withi internal units, etc. As for the noise condition
in Theorem9, this would be satisfied wheneverP(|η(X) − 1/2| ≥ c) = 1 for
some constantc ∈ (0, 1/2]. The case whereer(h) − ν∗ ≥ µP{h(X) 6= h∗(X)}κ

for κ > 1 can be studied analogously, though the rate improvements over passive
learning are more subtle.
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6. Conclusions. Under Tsybakov’s noise conditions, active learning can of-
fer improved asymptotic convergence rates compared to passive learningwhen the
disagreement coefficient is finite. It is also possible to preserve these improved
convergence rates when learning with a nested structure of hypothesis classes, us-
ing an algorithm that adapts to both the noise conditions and the complexity of the
optimal classifier.

APPENDIX A: DEFINITION OFÊ AND RELATED QUANTITIES

We define the quantitŷEC following Koltchinskii’s analysis of excess risk in
terms of local Rademacher complexity [24]. The general idea is to construct a
bound on the excess risk achieved by a given algorithm, such as empiricalrisk
minimization, via an application of Talagrand’s inequality. Such a bound should
be based on a measure of the expressiveness of the set of functionsC; however,
to bound the excess risk achieved by a particular algorithm given a numberof
data points, we need only measure the expressiveness of the set of functions the
algorithm is likely to select from. For reasonable algorithms, such as empirical
risk minimization, this means the set of functions with reasonably small excess
risk. Thus, we can bound the excess risk of the algorithm in terms of a measure of
expressiveness of the set of functions with relatively small risk, typicallyreferred
to as alocal complexity measure. This reasoning is somewhat circular, in that first
we must decide how small to expect the excess risk of the returned functionto
be before we can calculate the local complexity measure, which itself is used to
calculate a bound on the risk of the returned function. Thus, we define thebound
on the excess risk as a kind of fixed point. Furthermore, we can estimate these
quantities using data-dependent confidence bounds, so that the excess risk bound
can be calculated without direct access to the distribution. For the data-dependent
measure of the expressiveness of the function class, we can use a Rademacher
process. A detailed motivation and derivation can be found in [24].

For our purposes, we add an additional constraint, by requiring the functions
we calculate the complexity of to agree with the labels of a labeled setL. This
is helpful for us, since given a setQ of labeled data with true labels, for any two
functionsh1 andh2 that agree on the labels ofL, it is always true that
erL∪Q(h1) − erL∪Q(h2) equals the difference of the true empirical error rates. As
we prove below, as long as the setL is chosen carefully (i.e., as in Algorithm 2),
the addition of this constraint is essentially inconsequential, so thatÊC remains a
valid excess risk bound. The detailed definitions are stated as follows.

For any functionf : X → R, andξ1, ξ2, . . . a sequence of independent random
variables with distribution uniform in{−1, +1}, define theRademacher process
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for f under a finite set of (index, label) pairsS ⊂ N × Y as

R(f ; S) =
1

|S|
∑

(i,y)∈S

ξif(Xi).

Theξi should be thought of as internal variables in the learning algorithm, rather
than being fundamental to the learning problem.

For any two finite setsL ⊂ N × Y andS ⊂ N × Y, define

C[L] = {h ∈ C : erL(h) = 0},
Ĉ(ǫ;L, S) = {h ∈ C[L] : erS(h) − min

h′∈C[L]
erS(h′) ≤ ǫ},

D̂C(ǫ;L, S) = sup
h1,h2∈Ĉ(ǫ;L,S)

1

|S|
∑

(i,y)∈S

1[h1(Xi) 6= h2(Xi)],

and φ̂C(ǫ;L, S) =
1

2
sup

h1,h2∈Ĉ(ǫ;L,S)

R(h1 − h2; S).

For δ, ǫ > 0, m ∈ N, definesm(δ) = ln 20m2 log2(3m)
δ andZǫ = {j ∈ Z : 2j ≥ ǫ},

and for any setS ⊂ N × Y, define the setS(m) = {(i, y) ∈ S : i ≤ m}. We use
the following definitions from Koltchinskii [24] with only minor modifications.

DEFINITION 3. For ǫ ∈ [0, 1], and finite setsS,L ⊂ N × Y, define

ÛC(ǫ, δ;L, S) = K̂






φ̂C(ĉǫ;L, S) +

√

√

√

√

s|S|(δ)D̂C(ĉǫ;L, S)

|S| +
s|S|(δ)

|S|






,

and ÊC(S, δ;L) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, min
m∈N

ÛC(2j , δ;L(m), S(m)) ≤ 2j−4
}

,

where, for our purposes, we can takêK = 752, and ĉ = 3/2, though there seems
to be room for improvement in these constants. For completeness, we alsodefine
ÊC(∅, δ; C,L) = ∞ by convention. ⋄

We also define a related quantity, representing a distribution-dependent version
of Ê, also explored by Koltchinskii [24]. For ǫ > 0, define

C(ǫ) = {h ∈ C : er(h) − ν ≤ ǫ}.
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Form ∈ N, let

φC(m, ǫ) = E sup
h1,h2∈C(ǫ)

|(er(h1) − erm(h1)) − (er(h2) − erm(h2))|,

ŨC(m, ǫ, δ) = K̃



φC(m, c̃ǫ) +

√

sm(δ)diam(c̃ǫ; C)

m
+

sm(δ)

m



 ,

and ẼC(m, δ) = inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŨC(m, 2j , δ) ≤ 2j−4
}

,

where, for our purposes, we can takeK̃ = 8272 andc̃ = 3. For completeness, we
also definẽEC(0, δ) = ∞.

A.1. Definition of r0. In Definition 1, we tookr0 = 0. If θ < ∞, then this
choice is usually relatively harmless. However, in some cases, settingr0 = 0 results
in a suboptimal, or even infinite, value ofθ, which is undesirable. In these cases,
we would like to setr0 as large as possible while maintaining the validity of the
bounds. If we do this carefully enough, we should be able to establish bounds
that, even in the worst case whenθ = 1/r0, are never worse than the bounds
for some analogous passive learning method; however, to do this requires r0 to
depend on the parameters of the learning problem: namely,n, δ, C, andDXY .
The effect of a largerr0 can sometimes be dramatic, as there are scenarios where
1 ≪ θ ≪ 1/r0 [8]; we certainly wish to distinguish between such scenarios, and
those whereθ ∝ 1/r0.

Generally, depending on the bound we wish to prove, different values of r0

may be appropriate. For the tightest bound in terms ofθ proven below (namely,
Lemma7), the definition ofr0 = rC(n, δ) in (13) below gives a good bound. For
the looser bounds (namely, Theorems5 and6), a larger value ofr0 may provide
better bounds; however, this same general technique can be employed to define a
good value forr0 in these looser bounds as well, simply using upper bounds on (13)
analogous to how the theorems themselves are derived from Lemma7 in their proof
below. Likewise, one can state analogous refinements ofr0 for Theorems1 - 4,
though for brevity these are left for the reader’s independent consideration.

DEFINITION 4. Define
(12)

m̃C(n, δ) = min

{

m∈N : n ≤ log2

4m2

δ
+ 2e

m−1
∑

ℓ=0

P

(

DIS
(

C(6ẼC(ℓ, δ))
)

)}

and

(13) rC(n, δ) = max







1

m̃C(n, δ)

m̃C(n,δ)−1
∑

ℓ=0

diam(6ẼC(ℓ, δ); C), 2−n







.
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⋄

We use this definition ofr0 = rC(n, δ) in all of the proofs below. In partic-
ular, with this definition, Lemma7 is never significantly worse than the analo-
gous known result for passive learning (though it can be significantly better when
θ << 1/r0).

APPENDIX B: MAIN PROOFS

Recall thatZ(m) = {(i, Yi) : i ≤ m} is the indexedtrue labels for the first
m points in the data sequence. LetÊC(m, δ) = ÊC(Z(m), δ; ∅). For eachm ∈ N,
let ĥ∗

m = argmin
h∈C

erm(h) be the empirical risk minimizer inC for the true labels

of the firstm data points. The following lemma is crucial to all of the proofs that
follow.

LEMMA 5. [24] For δ ∈ (0, 1/2), there is an eventEC,δ with P(EC,δ) ≥
1 − δ/2 such that, on eventEC,δ, ∀m ∈ N,∀h ∈ C,∀τ ∈ (0, 1/m),∀h′ ∈ C(τ),

er(h) − ν ≤ max
{

2(erm(h) − erm(h′) + τ), ÊC(m, δ)
}

erm(h) − erm(ĥ∗
m) ≤ 3

2 max
{

(er(h) − ν), ÊC(m, δ)
}

,

ÊC(m, δ) ≤ ẼC(m, δ),

and for anyj ∈ Z with 2j > ÊC(m, δ),

sup
h1,h2∈C(2j)

|(erm(h1) − er(h1)) − (erm(h2) − er(h2))| ≤ ÛC(2j , δ; ∅,Z(m)).

⋄

This lemma essentially follows from details of the proof of Koltchinskii’s The-
orem 1, Lemma 2, and Theorem 3 [24], combined with a union bound so that
the results hold simultaneously for allm. We will not prove Lemma5 here. The
reader is referred to Koltchinskii’s paper for the details. Specifically, each of the
four inequalities of Lemma5 basically follows from Step 5 of Koltchinskii’s proof
of his Theorem 3 in [24], in combination with other facts. In particular, the third
inequality in Lemma5 directly follows from Koltchinskii’s Theorem 3. The fourth
inequality follows from a combination of the aforementioned Step 5, and bounds
on the probability of a particular eventEn(sn(δ)) given in the proof of Koltchin-
skii’s Theorem 1. The second inequality in Lemma5 follows from a combination
of Koltchinskii’s Theorem 3 and (9.2) in his Lemma 2 proof. Note that the addition
of the “min

m∈N
” in our definition ofÊC, compared to Koltchinskii’s original definition
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(of δ̂n(t)), does not cause any problems for Theorem 3 in [24], since we are em-
ploying a union bound to enable Koltchinskii’s Theorem 3 to apply simultaneously
for all n anyway, and sinceφC(n, ǫ) and sn(δ)

n are nonincreasing functions ofn.
The first inequality in our Lemma5 follows from Koltchinskii’s Theorem 3, com-
bined with a slight twist on the sequence of bounds on the excess risk found in the
middle of Koltchinskii’s page 2633; specifically, we can obtain this first inequality
if we follow this same sequence of bound relaxations, exceptnot relaxing the dif-
ference of empirical risks to the excess empirical risk (part of the third relaxation
in the sequence). Finally, we have setsn(δ) precisely so that Koltchinskii’s lower
bounds on the probabilities of the relevant events imply that all four inequalities in
our Lemma5 hold for allm, h, τ, andh′ with the desired1 − δ/2 probability.

B.1. Proofs Relating to Section4. For the proofs that follow, we will letL
andQ be the sets returned by Algorithm 2. It is important to keep in mind that, as
defined, the setsL(m) andQ(m) are indeed the values that the setsL andQ have
at the conclusion of roundm in the algorithm execution (i.e., after processing the
data pointXm). Furthermore, every index processed is added to eitherL or Q, so
that we always have|L(m)|+ |Q(m)| = |L(m) ∪Q(m)| = m, for anym ≤ |L∪Q|.

LEMMA 6. On eventEC,δ (of Lemma5), ∀m ∈ N ∪ {0} with m ≤ |L ∪ Q|,

ÊC(L(m) ∪ Q(m), δ;L(m)) = ÊC(m, δ),

∀ǫ ≥ 0, ĥ∗
m ∈ Ĉ(ǫ;L(m),L(m) ∪ Q(m)) ⊆ Ĉ(ǫ; ∅,Z(m)),

and

∀ǫ ≤ ÊC(m, δ), ÛC(ǫ, δ;L(m),L(m) ∪ Q(m)) = ÛC(ǫ, δ; ∅,Z(m)).

⋄

PROOF OFLEMMA 6. Throughout this proof, we assume the eventEC,δ oc-
curs. We proceed by induction onm, with the base case ofm = 0 (which clearly
holds). Suppose the statements are true for allm′ < m. The caseL(m) = ∅ is
trivial, so assumeL(m) 6= ∅. For the inductive step, supposeǫ ≤ ÊC(m, δ), and
take any

h ∈ Ĉ(ǫ; ∅,Z(m)).

In particular, by Lemma5, taking anyτ ∈ (0, 1/m) andh′ ∈ C(τ), we have

er(h) − ν ≤ max
{

2(erm(h) − erm(h′) + τ), ÊC(m, δ)
}

≤ max
{

2(erm(h) − erm(ĥ∗
m) + τ), ÊC(m, δ)

}

.
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Taking the limit asτ → 0 implies

er(h) − ν ≤ max
{

2(erm(h) − erm(ĥ∗
m)), ÊC(m, δ)

}

≤ 2ÊC(m, δ),

and thus for any non-negative integerm′ < m and anyh′ ∈ C, Lemma5 implies

erm′(h) − erm′(h′) ≤ erm′(h) − erm′(ĥ∗
m′) ≤ 3

2
max

{

er(h) − ν, ÊC(m′, δ)
}

≤ 3

2
max

{

2ÊC(m, δ), ÊC(m′, δ)
}

≤ 3ÊC(m′, δ)=3ÊC(L(m′)∪Q(m′), δ;L(m′)).

Since this is below the threshold∆m′(L(m′), Q(m′), h, h′, δ), by induction onm′ <
m we must haveerL(m)(h) = 0, and thereforeh ∈ Ĉ(ǫ;L(m),L(m)∪Q(m)). Since
this is the case for all suchh, we must have that

(14) Ĉ(ǫ;L(m),L(m) ∪ Q(m)) ⊇ Ĉ(ǫ; ∅,Z(m)).

In particular, this implies that

ÛC(ǫ, δ;L(m),L(m) ∪ Q(m)) ≥ ÛC(ǫ, δ; ∅,Z(m)).

SinceÊC(m, δ) is non-increasing inm, by the inductive hypothesis, this means

min
m′≤m

ÛC(ÊC(m, δ), δ;L(m′),L(m′) ∪ Q(m′))

≥ min
m′≤m

ÛC(ÊC(m, δ), δ; ∅,Z(m′)) >
1

16
ÊC(m, δ),

where the last inequality follows from the definition ofÊC(m, δ), (which is a power
of 2). Thus, we must havêEC(L(m) ∪ Q(m), δ;L(m)) ≥ ÊC(m, δ).

The relation in (14) also implies that

ĥ∗
m ∈ Ĉ(ÊC(m, δ);L(m),L(m) ∪ Q(m)) ⊆ C[L(m)],

and therefore

∀ǫ ≥ 0, ĥ∗
m ∈ Ĉ(ǫ;L(m),L(m) ∪ Q(m)) ⊆ Ĉ(ǫ; ∅,Z(m)).

The inductive hypothesis already gives us that

∀ǫ ≥ 0,∀m′ < m, Ĉ(ǫ;L(m′),L(m′) ∪ Q(m′)) ⊆ Ĉ(ǫ; ∅,Z(m′)).

Combining these facts implies

∀ǫ ≥ 0,∀m′ ≤ m, ÛC(ǫ, δ;L(m′),L(m′) ∪ Q(m′)) ≤ ÛC(ǫ, δ; ∅,Z(m′)),
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and therefore

∀ǫ ≥ 0, min
m′≤m

ÛC(ǫ, δ;L(m′),L(m′) ∪ Q(m′)) ≤ min
m′≤m

ÛC(ǫ, δ; ∅,Z(m′)).

But this meanŝEC(L(m) ∪ Q(m), δ;L(m)) ≤ ÊC(m, δ). The lemma now follows
by the principle of induction.

LEMMA 7. Suppose for anyn ∈ N, ĥn is the classifier returned by Algorithm
2 with threshold as in(11), when allowedn label requests and given confidence
parameterδ ∈ (0, 1/2), and suppose further thatmn is the value of|Q|+ |L| when
Algorithm 2 returns. Then there is an eventHC,δ such thatP(HC,δ∩EC,δ) ≥ 1−δ,
such that onHC,δ ∩ EC,δ, ∀n ∈ N,

(15) er(ĥn) − ν ≤ ẼC(mn, δ),

and

(16) n ≤ min

{

mn, log2

4m2
n

δ
+ 4eθ

(

1 +
mn−1
∑

ℓ=0

diam(6ẼC(ℓ, δ); C)

)}

.

⋄

PROOF OFLEMMA 7. Again, assume eventEC,δ occurs. By Lemma5, ∀τ ∈
(0, 1/mn) andh′

n ∈ C(τ),

er(ĥn) − ν ≤ max
{

2(ermn(ĥn) − ermn(h′
n) + τ), ÊC(mn, δ)

}

≤ max
{

2(ermn(ĥn) − ermn(ĥ∗
mn

) + τ), ÊC(mn, δ)
}

.

Letting τ → 0, and noting thaterL(ĥ∗
mn

) = 0 (Lemma6) implies ermn(ĥn) =

ermn(ĥ∗
mn

), we have

er(ĥn) − ν ≤ ÊC(mn, δ) ≤ ẼC(mn, δ),

where the last inequality is also due to Lemma5. Note that thiŝEC(mn, δ) repre-
sents an interesting data-dependent bound.

To get the bound on the number of label requests, we proceed as follows. For any
m ∈ N, and integerℓ ∈ [0, m), let Iℓ be the indicator for the event that Algorithm
2 requests the labelYℓ+1 and letNm =

∑m−1
ℓ=0 Iℓ. Also, letI ′ℓ be the indicator for

the event{Xℓ+1 ∈ DIS(C(6ẼC(ℓ, δ)))}, and letN ′
m =

∑m−1
ℓ=0 I ′ℓ. Noting that

Iℓ = 1

[

{Xℓ+1∈DIS(Ĉ(3ÊC(L(ℓ)∪Q(ℓ), δ;L(ℓ));L(ℓ),L(ℓ)∪Q(ℓ)))}∩{mn >ℓ}
]

,
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we have that for anyq ≥ 0,

P [{Nm > q} ∩ EC,δ]

≤ P

[

m−1
∑

ℓ=0

1

[

{Xℓ+1 ∈ DIS(Ĉ(3ẼC(ℓ, δ); ∅,Z(ℓ)))} ∩ EC,δ

]

> q

]

≤ P

[

m−1
∑

ℓ=0

1

[

{Xℓ+1 ∈ DIS(C(6ẼC(ℓ, δ)))}
]

> q

]

= P
[

N ′
m > q

]

.

The first inequality is due to Lemmas6 and5, while the second inequality is due
to Lemma5. Note that

E[N ′
m] =

m−1
∑

ℓ=0

P[I ′ℓ = 1] =
m−1
∑

ℓ=0

P

(

DIS
(

C(2ẼC(ℓ, δ))
)

)

.

Let us name this last quantityqm. Thus, by union and Chernoff bounds,

P

[{

∃m ∈ N : Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

N ′
m > max

{

2eqm, qm + log2

4m2

δ

}}]

≤
∑

m∈N

δ

4m2
≤ δ

2
.

For anyn, we known ≤ mn ≤ 2n. Therefore, we have that on an event (which
includesEC,δ) occurring with probability≥ 1 − δ, for everyn ∈ N,

n ≤ max{Nmn , log2 mn} ≤ max

{

2eqmn , qmn + log2

4m2
n

δ

}

≤ log2

4m2
n

δ
+ 2e

mn−1
∑

ℓ=0

P

(

DIS
(

C(6ẼC(ℓ, δ))
)

)

.

In particular, this impliesm̃n := m̃C(n, δ) ≤ mn (wherem̃C(n, δ) is defined
in (12)). We now use the definition ofθ with ther0 in (13).
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n ≤ log2

4m̃2
n

δ
+ 2e

m̃n−1
∑

ℓ=0

P

(

DIS
(

C(6ẼC(ℓ, δ))
)

)

≤ log2

4m̃2
n

δ
+ 2eθ

m̃n−1
∑

ℓ=0

max
{

diam(6ẼC(ℓ, δ); C), rC(n, δ)
}

≤ log2

4m̃2
n

δ
+ 4eθ

(

1 +
m̃n−1
∑

ℓ=0

diam(6ẼC(ℓ, δ); C)

)

≤ log2

4m2
n

δ
+ 4eθ

(

1 +
mn−1
∑

ℓ=0

diam(6ẼC(ℓ, δ); C)

)

.

LEMMA 8. On eventHC,δ ∩ EC,δ, under Condition1, ∀n ∈ N,

min
{

ẼC(mn, δ), 1
}

≤











c
(

d + log 1
δ

)

· exp

{

−
√

n
cθ(d+log(1/δ))

}

, if κ = 1

c
(

θ(d log n+log(1/δ))
n

) κ
2κ−2 , if κ > 1

,

for a finite constantc (depending onκ andµ); under the additional Condition2,
∀n ∈ N,

min
{

ẼC(mn, δ), 1
}

≤ c

(

θ log(n/δ)

n

)

κ
2κ+ρ−2

,

for a finite constantc (depending onκ, µ, ρ, andα). ⋄

PROOF OFLEMMA 8. We begin with the first case (Condition1only). We know
that forǫ ∈ (0, 1),

ωC(m, ǫ) ≤ K

√

ǫd log 2
ǫ

m

for some constantK [see e.g.,28]. Noting thatφC(m, ǫ) ≤ ωC(m, diam(ǫ; C)),
we have that∀ǫ > 0,

ŨC(m, ǫ, δ)

≤ K̃



K

√

diam(c̃ǫ; C)d log 2
diam(c̃ǫ;C)

m
+

√

sm(δ)diam(c̃ǫ; C)

m
+

sm(δ)

m





≤ K ′ max







√

ǫ1/κd log 2+2ǫ
ǫ

m
,

√

sm(δ)ǫ1/κ

m
,
sm(δ)

m







.
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If sm(δ)/m ≤ 1, then taking anyǫ ≥ K ′′
(

d log m+log(1/δ)
m

)
κ

2κ−1 , for some ap-

propriate constantK ′′ > 0 (depending onµ andκ), suffices to make this latter
quantity≤ ǫ

16 . So we must have that

(17) min
{

ẼC(m, δ), 1
}

≤ K(3)
(

d log m + log(1/δ)

m

)

κ
2κ−1

for some constantK(3). Plugging this into the query bound (16), we have thatn ≤
(18)

log2

4m2
n

δ
+4eθ



5 +

∫ mn−1

1
max{µ, 1}(6K(3))

1
κ

(

d log x + log(1/δ)

x

)

1
2κ−1

dx



.

If κ > 1, (18) is at mostK(4)θm
2κ−2
2κ−1
n (d log mn + log(1/δ))

1
2κ−1 , for some

constantK(4) (depending onκ andµ). This implies

mn ≥ K(5)
(

n

θ(d log n + log(1/δ))1/(2κ−1)

)
2κ−1
2κ−2

,

for some constantK(5). Plugging this into (17) completes the proof for this case.
On the other hand, ifκ = 1, (18) is at mostK(6)θ(d log mn +log(1/δ)) log mn,

for some constantK(6) (depending onµ). This implies

mn ≥ exp

{

K(7)

√

n

θ(d + log(1/δ))
− 1

}

,

for some constantK(7). Plugging this into (17) and simplifying the expression with
a bit of algebra completes this case.

For the bound under Condition2, again we have that

φC(m, ǫ) ≤ ωC(m, diam(ǫ; C)) ≤ α · max
{

µ
1−ρ
2 · m−1/2ǫ

1−ρ
2κ , m

− 1
1+ρ

}

.

From this, it quickly follows that
(19)

min
{

ẼC(m, δ), 1
}

≤K(8)max

{

m
− κ

2κ+ρ−1 ,

(

log m
δ

m

)

κ
2κ−1

}

≤K(8)
(

log m
δ

m

)

κ
2κ+ρ−1

for some constantK(8) (depending onµ, α, ρ andκ). Plugging this into the query
bound (16), we have that

n ≤ log2

4m2
n

δ
+ 4eθ



5 +

∫ mn−1

1
max{µ, 1}(6K(8))

1
κ

(

log x
δ

x

)

1
2κ+ρ−1

dx





≤ K(9)θm
2κ+ρ−2
2κ+ρ−1
n

(

log
mn

δ

)
1

2κ+ρ−1

,
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for some constantK(9) (depending onκ, µ, α, andρ). This implies

mn ≥ K(10)

(

n

θ (log(n/δ))1/(2κ+ρ−1)

)
2κ+ρ−1
2κ+ρ−2

,

for some constantK(10). Plugging this into (19) completes the proof of this case.

PROOF OFTHEOREM 5 AND THEOREM 6. These theorems now follow from
Lemmas7 and8.

B.2. Proofs Relating to Section5.

LEMMA 9. For i ∈ N, let δi = δ/(2i2) and min = |Lin| + |Qin| (for i >
√

n/2, defineLin = Qin = ∅). For eachn, let în denote the smallest indexi
satisfying the condition onhin in Step 3 of Algorithm 3. Letτn = 2−n and define

i∗n = min
{

i ∈ N : ∀i′ ≥ i,∀j ≥ i′,∀h ∈ Ci′(τn), erLjn
(h) = 0

}

,

and

j∗n = argmin
j∈N

νj + ÊCj
(mjn, δj).

Then on the event
∞
⋂

i=1
ECi,δi

,

∀n ∈ N, max
{

i∗n, în
}

≤ j∗n.

⋄

PROOF OFLEMMA 9. As before, note that forℓ ∈ N ∪ {0} with ℓ ≤ min,

L(ℓ)
in andQ

(ℓ)
in denote the setsL andQ, respectively, at the conclusion of roundℓ of

Algorithm 2, when run with classCi, label budget⌊n/(2i2)⌋, confidence parameter
δi, and threshold as in (11).

Assume the event
∞
⋂

i=1
ECi,δi

occurs. Suppose, for the sake of contradiction, that

j = j∗n < i∗n for somen ∈ N. Then there is somei ≥ i∗n − 1 such that, for some

ℓ < min, we have someh′ ∈ Ci∗n−1(τn) ∩ Ci[L(ℓ)
in ] with

erℓ(h
′) − min

h∈Ci

erℓ(h) ≥ erℓ(h
′) − min

h∈Ci[L
(ℓ)
in

]

erℓ(h)

> 3ÊCi
(L(ℓ)

in ∪ Q
(ℓ)
in , δi;L(ℓ)

in ) = 3ÊCi
(ℓ, δi),
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where the last equality is due to Lemma6. Lemma5 implies this will not happen
for i = i∗n − 1, so we can assumei ≥ i∗n. We therefore have (by Lemma5) that

3ÊCi
(ℓ, δi) < erℓ(h

′) − min
h∈Ci

erℓ(h) ≤ 3

2
max

{

τn + νi∗n−1 − νi, ÊCi
(ℓ, δi)

}

.

In particular, this implies that

3ÊCi
(min, δi) ≤ 3ÊCi

(ℓ, δi) <
3

2

(

τn + νi∗n−1 − νi
) ≤ 3

2
(τn + νj − νi) .

Therefore, (by definition ofj = j∗n)

ÊCj
(mjn, δj) + νj ≤ ÊCi

(min, δi) + νi ≤
1

2
(τn + νj − νi) + νi ≤

τn

2
+ νj .

This would imply thatÊCj
(mjn, δj) ≤ τn/2 < 1

mjn
(due to the second return

condition in Algorithm 2), which by definition is not possible, so we have a con-
tradiction. Therefore, we must have that everyj∗n ≥ i∗n. In particular, we have that
∀n ∈ N, hj∗nn 6= ∅.

Now pick an arbitraryi ∈ N with i > j = j∗n, and leth′ ∈ Cj(τn). Then
erLin∪Qin

(hjn) − erLin∪Qin
(hin) = ermin

(hjn) − ermin
(hin)

≤ ermin
(hjn) − min

h∈Ci

ermin
(h)

≤ 3

2
max

{

er(hjn) − νi, ÊCi
(min, δi)

}

(by Lemma5)

=
3

2
max

{

er(hjn) − νj + νj − νi, ÊCi
(min, δi)

}

≤ 3

2
max















2(ermjn
(hjn) − ermjn

(h′) + τn) + νj − νi

ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

(by Lemma5)

=
3

2
max

{

ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

(sincej ≥ i∗n)

=
3

2
ÊCi

(min, δi) (by definition ofj∗t )

=
3

2
ÊC(Lin ∪ Qin, δi;Lin) (by Lemma6).

LEMMA 10. On the event
∞
⋂

i=1
ECi,δi

, ∀n ∈ N,

er(hînn) − ν∞ ≤ 3 min
i∈N

(

νi − ν∞ + ẼCi
(min, δi)

)

.

⋄
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PROOF OFLEMMA 10. Let h′
n ∈ Cj∗n(τn) for τn ∈ (0, 2−n), n ∈ N. Suppose

the event
∞
⋂

i=1
ECi,δi

occurs.

er(hînn) − ν∞

= νj∗n − ν∞ + er(hînn) − νj∗n

≤ νj∗n − ν∞ + max







2(ermj∗nn
(hînn) − ermj∗nn

(h′
n) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

≤ νj∗n − ν∞ + max







2(erLj∗nn∪Qj∗nn
(hînn) − erLj∗nn∪Qj∗nn

(hj∗nn) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

The first inequality follows from Lemma5. The second inequality is due to
Lemma9 (i.e.,j∗n ≥ max{i∗n, în}). In this last line, we can letτn → 0, and use the
definition of în combined with the fact that̂in ≤ j∗n, to show that it is at most

νj∗n − ν∞ + max

{

2

(

3

2
ÊCj∗n

(Lj∗nn ∪ Qj∗nn, δj∗n ;Lj∗nn)

)

, ÊCj∗n
(mj∗nn, δj∗n)

}

= νj∗n − ν∞ + 3ÊCj∗n
(mj∗nn, δj∗n) (by Lemma6)

≤ 3 min
i

(

νi − ν∞ + ÊCi
(min, δi)

)

(by definition ofj∗n)

≤ 3 min
i

(

νi − ν∞ + ẼCi
(min, δi)

)

(by Lemma5).

PROOF OFTHEOREM 7 AND THEOREM 8. These theorems now follow from
Lemmas10 and8. That is, Lemma10 gives a bound in terms of thẽE quantities,

holding on event
∞
⋂

i=1
ECi,δi

, and Lemma8 bounds thesẽE quantities as desired, on

event
∞
⋂

i=1
HCi,δi

∩ ECi,δi
. Noting that, by a union bound,

P

[

∞
⋂

i=1

HCi,δi
∩ ECi,δi

]

≥ 1 −
∞
∑

i=1

δi ≥ 1 − δ

completes the proof.

DEFINITION 5. Define̊c = c̃ + 1, D̊(ǫ) = lim
j→∞

diam(ǫ; Cj), and

ŮCi
(m, ǫ, δi) = K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m





and E̊Ci
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

. ⋄
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LEMMA 11. For anym, i ∈ N,

ẼCi
(m, δi) ≤ max

{

E̊Ci
(m, δi), νi − ν∞

}

.

⋄

PROOF OFLEMMA 11. Forǫ > νi − ν∞,

ŨCi
(m, ǫ, δi) = K̃



φCi
(m, c̃ǫ) +

√

sm(δi)diam(c̃ǫ; Ci)

m
+

sm(δi)

m





≤ K̃



ωCi
(m, diam(c̃ǫ; Ci)) +

√

sm(δi)diam(c̃ǫ; Ci)

m
+

sm(δi)

m



 .

But diam(c̃ǫ; Ci) ≤ D̊(c̃ǫ + (νi − ν∞)) ≤ D̊(̊cǫ), so the above line is at most

K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m



 = ŮCi
(m, ǫ, δi).

In particular, this implies that

ẼCi
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŨCi
(m, 2j , δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŨCi
(m, 2j , δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

= max
{

inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

, (νi − ν∞)
}

= max
{

E̊Ci
(m, δi), νi − ν∞

}

.

PROOF OFTHEOREM 9. By the same argument that gave us (17), we have that

min
{

E̊Ci
(m, δi), 1

}

≤ K1
di log m + log(i/δ)

m
,

for some constantK1 (depending onµ).
Now assume the event

⋂∞
i=1 HCi,δi

∩ ECi,δi
occurs. In particular, Lemmas10

and11 imply that for some constantK2, ∀n ∈ N,

er(ĥn) − ν∗ ≤ min

{

1, 3 min
i∈N

(

2(νi − ν∗) + E̊Ci
(min, δi)

)

}

≤ K2 min
i∈N

(

(νi − ν∗) + min

{

1,
di log min + log(i/δ)

min

})

.(20)



RATES OF CONVERGENCE IN ACTIVE LEARNING 41

Take anyi ∈ N. The label request bound of Lemma7, along with Lemma11,
implies that

⌊n/(2i2)⌋

≤ log2

8m2
ini2

δ
+ K3θi

(

5 +

∫ min

1
max

{

νi − ν∗,
di log x + log(i/δ)

x

}

dx

)

≤ K4θi max {(νi − ν∗)min, (di log min + log(i/δ)) log min} .

Lettingγi(n) =
√

n
i2θi(di+log(i/δ))

, this implies that

min

{

1,
di log min + log(i/δ)

min

}

≤ min

{

1, K5

(

(νi − ν∗) +

(

di(γi(n) + γi(n)2) + log
i

δ

)

exp {−c2γi(n)}
)}

≤ K6

(

(νi − ν∗) +

(

di + log
i

δ

)

exp {−c3γi(n)}
)

.

Combined with (20), this establishes the result.

APPENDIX C: ESTIMATORS IN ALGORITHM 1

As mentioned earlier, we can replaceP(R) andP(DIS(V )) in Algorithm 1 with
estimators based only onunlabeleddata points, while preserving the rates in The-
orem4 up to constant factors. Here we briefly sketch the modifications to the proof
necessary to compensate for this additional estimation.

The estimators can be defined in a variety of ways. To be concrete here, we de-

fine them based on Hoeffding’s inequality, lettingMm = 512(m+1)6

δ2 ln 8(m+1)2

δ ,

Γm = δ
32(m+1)3

, P̂m(DIS(V )) = Γm + M−1
m

∑Mm
i=1 1DIS(V )

(

X ′
i,m

)

, and

P̂m(R) = Γm + M−1
m

∑Mm
i=1 1R

(

X ′
i,m

)

, where theX ′
i,m are distributed i.i.d. ac-

cording toDX , independent from the data sequence(X1, Y1), (X2, Y2), . . . (per-
haps set aside in a preprocessing step). Replacing each “P” in Algorithm 1 with
“ P̂m” (for the current value ofm in the algorithm), the analysis above can be
adapted to compensate as follows.

First, note that by Hoeffding’s inequality and a union bound, with probabil-
ity 1 − δ, every P̂m(DIS(V )) and P̂m(R) calculated in the algorithm satisfies
P̂m(DIS(V )) − 2Γm ≤ P(DIS(V )) ≤ P̂m(DIS(V )) and P̂m(R) − 2Γm ≤
P(R) ≤ P̂m(R); supposing this1 − δ probability event occurs, along with the
1 − δ probability event analogous to that in the original proof above (i.e., that
theUB andLB evaluations are valid), theβt values remain valid bounds on the
achieved excess error rate. Also, at any time withP(R) ≤ 1/2, considerm′ ≤
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− ln(1 − δ/(2(m + 1)2))/(2P(R)) ≤ ln(1 − δ/(2(m + 1)2))/ ln(1 − P(R)); we
have(1−P(R))m′ ≥ 1−δ/(2(m+1)2), so that with probability1−δ/(2(m+1)2)
the nextm′ data points are not inR. Thus, by a union bound, with probability
1 − δ, at all times in the algorithm we havemin{m′ > m : Xm′ ∈ R} − m >
− ln(1 − δ/(2(m + 1)2))/(2P(R)). Suppose this event also holds. In particular,
this implies the invariant that when calculatingP̂m in Steps 2 and 9 form > 0,

Γm = δ
32(m+1)3

≤ − ln(1−δ/(2(m+1)2))
16(m+1) ≤ P(R)/8.

Now replace the “2” in (4) with “4.” By the same reasoning as before, ifV (θ) =
∅, we haveP(DIS(V )) ≤ P(R)/4, so thatP̂m(DIS(V )) ≤ P(DIS(V )) +
2Γm ≤ P(DIS(V )) + P(R)/4 ≤ P(R)/2 ≤ P̂m(R)/2, which satisfies the
condition in Step 2 on the next round. Propagating this change inV (θ), (5) be-
comesP(R)κ−1(4µθ)−κ < 4G(|Q| − 1, δ/n). Also, (6) becomes ǫ

2G(|Q|−1,δ/n) <

P̂m(R) ≤ P(R) + 2Γm ≤ 2P(R), so that we may simply replace each “2” in (7)
by a “4,” and consequently the same is true of (8); in (9) and (10), this changes
the “2ǫ ” to “ 4

ǫ ” and the “6” to “ 12.” Finally, in addition to these adjustments to
(10), thelog2

2
ǫ factor in (10) becomeslog8/5

2
ǫ , and is explained as follows. When

the condition in Step 2 is satisfied for somem, P(DIS(V )) ≤ P̂m(DIS(V )) ≤
(1/2)P̂m(R) ≤ (1/2)P(R) + Γm ≤ (5/8)P(R), and thereforeP(R) is reduced at
least by a factor of5/8 every time we reach Step 3. In particular, after the algo-

rithm satisfies the condition in Step 2 at most
⌈

log8/5
5
4ǫ

⌉

≤ log8/5
2
ǫ times, we are

guaranteed somet (and correspondingR) satisfiesβt ≤ P̂m(R) ≤ P(R)+2Γm ≤
(5/4)P(R) ≤ ǫ. This guarantees the stated excess error bound from Theorem4
(with the slightly adjusted constants indicated above), holding with probability at
least1 − 3δ.

APPENDIX D: A GENERAL MINIMAX LOWER BOUND

In this appendix, we prove a general minimax lower bound for nontrivialC un-
der Condition1, matching the result of Castro and Nowak [13] for threshold clas-
sifiers (though stated in a slightly different form). The proof is essentially similar
to that of K̈aäriäinen [22], with modifications suited to these noise conditions.

For any hypothesis classC, and anyµ, κ ∈ [1,∞), let T (C, µ, κ) denote the
set of distributionsDXY satisfying Condition1 for the hypothesis classC and the
specified parametersµ andκ. Also, letA denote the set of all valid active learning
algorithms (of the kind studied above, taking as input a budgetn and a confidence
parameterδ, and returning a classifier after at mostn label requests).
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THEOREM 10. For any hypothesis classC with |C| ≥ 3, and anyµ ∈ [2,∞)
and κ ∈ (1,∞), there is aκ-dependent constantc ∈ (0,∞) such that, for any
δ ∈ (0, 1/16) and any integern ∈ N,

inf
A∈A

sup
DXY ∈T (C,µ,κ)

P

(

er (A(n, δ)) − ν ≥ cn− κ
2κ−2

)

> δ.

⋄

PROOF. We proceed by reduction from hypothesis testing. Specifically, con-
sider two values:p0 = 1

2

(

1 − ǫ
κ−1

κ

)

and p1 = 1
2

(

1 + ǫ
κ−1

κ

)

, where we will

specify a value forǫ ∈ (0, 1) later. Consider the problem of constructing an esti-
mator în(b1, . . . , bn) ∈ {0, 1}, where eachbi ∈ {0, 1}. It is known [e.g.,10, 34]
that for anyδ ∈ (0, 1/16), if

(21) n <
(1 − 8δ) ln 1

8δ

8KL (p0‖p1)

(for KL(p0‖p1) = p0 ln p0

p1
+ (1 − p0) ln 1−p0

1−p1
), then for any sucĥin estimator

(possibly including additional independent internal randomness), thereis somei ∈
{0, 1} for which, if B

(i)
1 , . . . , B

(i)
n are i.i.d.Bernoulli(pi) random variables, then

(22) P

(

în(B
(i)
1 , . . . , B(i)

n ) 6= i
)

> δ.

Now returning to the active learning problem, we design the distributionDX as
follows. Since|C| ≥ 3, there existh0, h1 ∈ C andx, x′ ∈ X such thath0(x) 6=
h1(x) andh0(x

′) = h1(x
′). Suppose0 < ǫ < 1 − 2−

1
κ ; we will specify a specific

value for ǫ later. AssignDX({x}) = ǫ
1
κ , andDX({x′}) = 1 − ǫ

1
κ . Note that

DX({x′}) > 1 −
(

1 − 2−
1
κ

)
1
κ ≥ 1 − 2−

1
κ > ǫ.

Now fix δ ∈ (0, 1/16), and suppose we have some active learning algorithmA.
We will construct an estimator̂in based onA. Specifically, we start by randomly
sampling a sequenceX1, X2, . . . i.i.d. according toDX , to serve as the data se-
quence forA. Now we runA(n, δ). EveryXj is equal eitherx or x′. For thetth

label request made by the algorithm for someXj = x, we (in this case, playing
the role of the oracle) return as the label ofXj the valuehbt(x). The other label re-
quests are for the label of someXj = x′, and we returnh0(x

′) for these. In the end,
A returns a classifier̂h; based on this, definêin(b1, . . . , bn) = 1[ĥ(x) = h1(x)].

This simulated behavior forA to calculatêin(B
(i)
1 , . . . , B

(i)
n ), whereB

(i)
1 , . . . ,

B
(i)
n are i.i.d.Bernoulli(pi), is distributionally equivalent to runningA(n, δ) under

a distributionDXY = Di, whereDi has marginalDX on X , and is otherwise
defined by the following property. For(X, Y ) ∼ Di, P(Y = hi(x)|X = x) =
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1
2

(

1 + ǫ
κ−1

κ

)

, andP(Y = hi(x
′)|X = x′) = 1. Thus, for anyh′ with h′(x) 6=

hi(x) andh′(x′) = hi(x
′), we have (forDXY = Di)

er(h′) − er(hi) = (er(h′|{x}) − er(hi|{x}))ǫ
1
κ(23)

=

(

1

2

(

1 + ǫ
κ−1

κ

)

− 1

2

(

1 − ǫ
κ−1

κ

)

)

ǫ
1
κ = ǫ;

in particular, this is true forh′ = h1−i. Since anyh′ with h′(x′) 6= hi(x
′) has

er(h′) − er(hi) ≥ 1 − ǫ
1
κ > ǫ, we know that forǫ ≤ γ < 1 − ǫ

1
κ , diam(γ; C) =

diam(ǫ; C) = ǫ
1
κ ≤ µγ

1
κ . Furthermore, combining this with (23), we have that

anyh′ with eitherh′(x) 6= hi(x) or h′(x′) 6= hi(x
′) haser(h′)−er(hi) ≥ ǫ. Thus,

for 0 < γ < ǫ, diam(γ; C) = 0 < µγ
1
κ . Finally, for1 − ǫ

1
κ ≤ γ ≤ 1,

diam(γ; C) ≤ 1 ≤
(

1

1 − ǫ
1
κ

)
1
κ

γ
1
κ <









1

1 −
(

1 − 2−
1
κ

)
1
κ









1
κ

γ
1
κ ≤ 2γ

1
κ ≤ µγ

1
κ .

We therefore have thatDi ∈ T (C, µ, κ).
Now supposêh′ is the returned value from runningA(n, δ) with distribution

DXY . As mentioned, for any giveni ∈ {0, 1}, if DXY = Di, then1[ĥ′(x) =

h1(x)] is distributionally equivalent tôin(B
(i)
1 , . . . , B

(i)
n ) for B

(i)
1 , . . . , B

(i)
n i.i.d.

Bernoulli(pi). The reasoning above also indicates that forDXY = Di,

P

(

er
(

ĥ′
)

− er(hi) ≥ ǫ
)

≥ P

(

ĥ′(x) 6= hi(x)
)

= P

(

1[ĥ′(x) = h1(x)] 6= i
)

= P

(

în(B
(i)
1 , . . . , B(i)

n ) 6= i
)

.

Therefore, by the aforementioned known results on hypothesis testing for Bernoulli
means, forn as in (21),

sup
DXY ∈{D0,D1}

P

(

er
(

ĥ′
)

− ν ≥ ǫ
)

≥ sup
i∈{0,1}

P

(

în(B
(i)
1 , . . . , B(i)

n ) 6= i
)

> δ.

Studying (21), and noting thatγ ∈ (0, 1/2) =⇒ KL
(

1
2(1 − γ)‖1

2(1 + γ)
)

≤
2 ln(3)γ2, we see that taking

ǫ =
(

1 − 2−
1
κ

)

(36n)−
κ

2κ−2 < 1 − 2−
1
κ

satisfies

n ≤ 1

36
ǫ

2−2κ
κ ln

1

8δ
<

(1 − 8δ) ln 1
8δ

8KL(p0‖p1)
.
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Although this is stated for the worst case over the distributionDXY , including
the worst caseDX , we can extend the proof to most nontrivial fixedDX , only max-
imizing overDXY subject to the constraint that it has marginalDX ; specifically, it

suffices to haveDX such that∃h1, h2 ∈ C with P(h1(X) 6= h2(X)) ∝ n− 1
2κ−2

[see20, 22]. Also, the same proof technique can be used to show an analogous
lower bound on the minimax rates for theexpectedexcess error rate, as originally
studied by Castro and Nowak [13]. In fact, in that case (21) and (22) clearly im-
ply a minimax lower boundexp{−Ω(n)} for κ = 1; for instance, lettingDX be
concentrated entirely on a single pointx, using a small constant label noise rate,
and settingδ = exp{−Ω(n)}, for sufficiently largen it is necessary to identify the
optimal label forx with probability1 − δ to guarantee expected excess error∝ δ.
Finally, it is interesting to note that the same setup used in the above proof can be
used to show a general minimax lower bound∝ m− κ

2κ−1 for passive learningfrom
m i.i.d. labeled data points; the proof is identical to that above, except to note that
we expect onlyDX({x})m = ǫ

1
κ m samples among{X1, . . . , Xm} will equal x,

so that even passive algorithms takingm ∝ ǫ
1−2κ

κ i.i.d. samples as input can be
converted intôin estimators based on onlyn ∝ ǫ

2−2κ
κ Bernoulli samples (since

only theXj equal tox require a sampleB(i)
t to generate a label).
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[16] L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer-
Verlag New York, Inc., 1996.2, 3.2, 5

[17] E. Friedman. Active learning for smooth problems. InProceedings of the 22nd Conference on
Learning Theory, 2009.2.2
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