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Abstract

This work establishes distribution-free upper and lower bounds on the minimax label complexity
of active learning with general hypothesis classes, under various noise models. The results reveal
a number of surprising facts. In particular, under the noise model of Tsybakov (2004), the mini-
max label complexity of active learning with a VC class is always asymptotically smaller than that
of passive learning, and is typically significantly smaller than the best previously-published upper
bounds in the active learning literature. In high-noise regimes, it turns out that all active learn-
ing problems of a given VC dimension have roughly the same minimax label complexity, which
contrasts with well-known results for bounded noise. In low-noise regimes, we find that the la-
bel complexity is well-characterized by a simple combinatorial complexity measure we call the
star number. Interestingly, we find that almost all of the complexity measures previously explored
in the active learning literature have worst-case values exactly equal to the star number. We also
propose new active learning strategies that nearly achieve these minimax label complexities.

Keywords: Active Learning, Selective Sampling, Sequential Design, Adaptive Sampling, Statisti-
cal Learning Theory, Margin Condition, Tsybakov Noise, Sample Complexity, Minimax Analysis

1. Introduction

In many machine learning applications, in the process of training a high-accuracy classifier, the
primary bottleneck in time and effort is often the annotation of the large quantities of data required
for supervised learning. Active learning is a protocol designed to reduce this cost by allowing
the learning algorithm to sequentially identify highly-informative data points to be annotated. In
the specific model we study below, called pool-based active learning, the learning algorithm is
initially given access to a large pool of unlabeled data points, which are considered inexpensive and
abundant. It is then able to select any unlabeled data point from the pool and request to observe its
label. Given the label of this data point, the algorithm can then select another unlabeled data point to
be labeled, and so on. This interactive process continues until at most some prespecified number of
rounds is reached, at which time the algorithm must halt and produce a classifier. This contrasts with
passive learning, where the learning algorithm would be given access to a number of random labeled
data points. The hope is that, by sequentially selecting the data points to be labeled, the active
learning algorithm can direct the annotation effort toward only the highly-informative data points,
given the information already gathered by the previously-labeled data points, and thereby reduce
the total number of data points required to produce a classifier capable of predicting the labels of
new instances with at most a desired error rate. This model of active learning has been successfully
applied to a variety of learning problems, often with significant reductions in the number of label
observations required to obtain a given error rate for the resulting classifier (see Settles, 2012, for a
survey of several such applications).
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This article studies the theoretical capabilities of active learning, regarding the number of label
requests sufficient to learn a classifier to a desired error rate, known as the label complexity. There is
now a substantial literature on this subject (see Hanneke, 2014, for a survey of known results), but on
the important question of optimal performance in the general setting, the gaps present in the litera-
ture are quite substantial in some cases. In this work, we address this question by carefully studying
the minimax performance. Specifically, we are interested in the minimax label complexity, defined
as the smallest (over the choice of active learning algorithm) worst-case number of label requests
sufficient for the active learning algorithm to produce a classifier of a specified error rate, in the con-
text of various noise models (e.g., Tsybakov noise, bounded noise, agnostic noise, etc.). We derive
upper and lower bounds on the minimax label complexity for several noise models, which reveal
a variety of interesting and (in some cases) surprising observations. Furthermore, in establishing
the upper bounds, we propose a novel active learning strategy, which often achieves significantly
smaller label complexities than the active learning methods studied in the prior literature.

1.1 The Prior Literature on the Theory of Active Learning

Before getting into the technical details, we first review some background information about the
prior literature on the theory of active learning. This will also allow us to introduce the key contri-
butions of the present work.

The literature on the theory of active learning began with studies of the realizable case, a setting
in which the labels are assumed to be consistent with some classifier in a known hypothesis class,
and have no noise (Cohn, Atlas, and Ladner, 1994; Freund, Seung, Shamir, and Tishby, 1997; Das-
gupta, 2004, 2005). In this simple setting, Dasgupta (2005) supplied the first general analysis of the
label complexity of active learning, applicable to arbitrary hypothesis classes. However, Dasgupta
(2005) found that there are a range of minimax label complexities, depending on the structure of
the hypothesis class, so that even among hypothesis classes of roughly the same minimax sample
complexities for passive learning, there can be widely varying minimax label complexities for ac-
tive learning. In particular, he found that some hypothesis classes (e.g., interval classifiers) have
minimax label complexity essentially no better than that of passive learning, while others have a
minimax label complexity exponentially smaller than that of passive learning (e.g., threshold clas-
sifiers). Furthermore, most nontrivial hypothesis classes of interest in learning theory seem to fall
into the former category, with minimax label complexities essentially no better than passive learn-
ing. Fortunately, Dasgupta (2005) also found that in some of these hard cases, it is still possible to
show improvements over passive learning under restrictions on the data distribution.

Stemming from these observations, much of the literature on active learning in the realizable
case has focused on describing various special conditions under which the label complexity of ac-
tive learning is significantly better than that of passive learning: for instance, by placing restric-
tions on the marginal distribution of the unlabeled data (e.g., Dasgupta, Kalai, and Monteleoni,
2005; Balcan, Broder, and Zhang, 2007; El-Yaniv and Wiener, 2012; Balcan and Long, 2013; Han-
neke, 2014), or abandoning the minimax approach by expressing the label complexity with an ex-
plicit dependence on the optimal classifier (e.g., Dasgupta, 2005; Balcan, Hanneke, and Vaughan,
2010; Hanneke, 2009b, 2012). In the general case, such results have been abstracted into various
distribution-dependent (or sometimes data-dependent) complexity measures, such as the splitting in-
dex (Dasgupta, 2005), the disagreement coefficient (Hanneke, 2007b, 2009b), the extended teaching
dimension growth function (Hanneke, 2007a), and the related version space compression set size
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(El-Yaniv and Wiener, 2010, 2012; Wiener, Hanneke, and El-Yaniv, 2014). For each of these, there
are general upper bounds (and in some cases, minimax lower bounds) on the label complexities
achievable by active learning methods in the realizable case, expressed in terms of the complexity
measure. By expressing bounds on the label complexity in terms of these quantities, the analysis of
the label complexities achievable by active learning methods in the realizable case has been effec-
tively reduced to the problem of bounding one of these complexity measures. In particular, these
complexity measures are capable of exhibiting a range of behaviors, corresponding to the range of
label complexities achievable by active learning. For certain values of the complexity measures, the
resulting bounds reveal significant improvements over the minimax sample complexity of passive
learning, while for other values, the resulting bounds are essentially no better than the minimax
sample complexity of passive learning.

Moving beyond these initial studies of the realizable case, the more-recent literature has devel-
oped active learning algorithms that are provably robust to label noise. This advance was initiated
by the seminal work of Balcan, Beygelzimer, and Langford (2006, 2009) on the A? (Agnostic
Active) algorithm, and continued by a number of subsequent works (e.g., Dasgupta, Hsu, and Mon-
teleoni, 2007; Balcan, Broder, and Zhang, 2007; Castro and Nowak, 2006, 2008; Hanneke, 2007a,
2009a,b, 2011, 2012; Minsker, 2012; Koltchinskii, 2010; Beygelzimer, Dasgupta, and Langford,
2009; Beygelzimer, Hsu, Langford, and Zhang, 2010; Hsu, 2010; Ailon, Begleiter, and Ezra, 2012;
Hanneke and Yang, 2012). When moving into the analysis of label complexity in noisy settings, the
literature continues to follow the same intuition from the realizable case: that is, that there should be
some active learning problems that are inherently hard, sometimes no better than passive learning,
while others are significantly easier, with significant savings compared to passive learning. As such,
the general label complexity bounds proven in noisy settings have tended to follow similar patterns
to those found in the realizable case. In some scenarios, the bounds reflect interesting savings com-
pared to passive learning, while in other scenarios the bounds do not reflect any improvements at
all. However, unlike the realizable case, these upper bounds on the label complexities of the various
proposed methods for noisy settings lacked complementary minimax lower bounds showing that
they were accurately describing the fundamental capabilities of active learning in these settings.
For instance, in the setting of Tsybakov noise, there are essentially only two types of general lower
bounds on the minimax label complexity in the prior literature: (1) lower bounds that hold for all
nontrivial hypothesis classes of a given VC dimension, which therefore reflect a kind of best-case
scenario (Hanneke, 2011, 2014), and (2) lower bounds inherited from the realizable case (which
is a special case of Tsybakov noise). In particular, both of these lower bounds are always smaller
than the minimax sample complexity of passive learning under Tsybakov noise. Thus, although the
upper bounds on the label complexity of active learning in the literature are sometimes no better
than the minimax sample complexity of passive learning, the existing lower bounds are unable to
confirm that active learning truly cannot outperform passive learning in these scenarios. This gap
in our understanding of active learning with noise has persisted for a number of years now, without
really receiving a good explanation for why the gap exists and how it might be closed.

In the present work, we show that there is a very good reason for why better lower bounds
have not been discovered in general for the noisy case. For certain ranges of the noise parameters
(corresponding to the high-noise regime), these simple lower bounds are actually tight (up to certain
constant and logarithmic factors): that is, the upper bounds can actually be reduced to nearly match
these basic lower bounds. Proving this surprising fact requires the introduction of a new type of
active learning strategy, which selects its queries based on both the structure of the hypothesis class
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and the estimated variances of the labels. In particular, in these high-noise regimes, we find that all
hypothesis classes of the same VC dimension have essentially the same minimax label complexities
(up to logarithmic factors), in stark contrast to the well-known differentiation of hypothesis classes
observed in the realizable case by Dasgupta (2005).

For the remaining range of the noise parameters (the low-noise regime), we argue that the label
complexity takes a value sometimes larger than this basic lower bound, yet still typically smaller
than the known upper bounds. In this case, we further argue that the minimax label complexity is
well-characterized by a simple combinatorial complexity measure, which we call the star number.
In particular, these results reveal that for nonextremal parameter values, the minimax label com-
plexity of active learning under Tsybakov noise with any VC class is always smaller than that of
passive learning, a fact not implied by any results in the prior literature.

We further find that the star number can be used to characterize the minimax label complexities
for a variety of other noise models. Interestingly, we also show that almost all of the distribution-
dependent or data-dependent complexity measures from the prior literature on the label complexity
of active learning are exactly equal to the star number when maximized over the choice of dis-
tribution or data set (including all of those mentioned above). Thus, the star number represents a
unifying core concept within these disparate styles of analysis.

1.2 Our Contributions

Below, we summarize a few of the main contributions and interesting implications of this work.

e We develop a general noise-robust active learning strategy, which unlike previously-proposed
general methods, selects its queries based on both the structure of the hypothesis class and
the estimated variances of the labels.

e We obtain the first near-matching general distribution-free upper and lower bounds on the
minimax label complexity of active learning, under a variety of noise models.

e In many cases, the upper bounds significantly improve over the best upper bounds implied by
the prior literature.

e The upper bounds for Tsybakov noise always reflect improvements over the minimax sample
complexity of passive learning (for non-extremal noise parameter values), a feat not previ-
ously known to be possible.

¢ In high-noise regimes of Tsybakov noise, our results imply that all hypothesis classes of a
given VC dimension have roughly the same minimax label complexity (up to logarithmic
factors), in contrast to well-known results for bounded noise. This fact is not implied by any
results in the prior literature.

e We express our upper and lower bounds on the label complexity in terms of a simple combi-
natorial complexity measure, which we refer to as the star number.

e We show that for any hypothesis class, almost every complexity measure proposed to date
in the active learning literature has worst-case value exactly equal to the star number, thus
unifying the disparate styles of analysis in the active learning literature. We also prove that
the doubling dimension is bounded if and only if the star number is finite.
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e For most of the noise models studied here, we exhibit examples of hypothesis classes span-
ning the gaps between the upper and lower bounds, thus demonstrating that the gaps cannot
generally be reduced (aside from logarithmic factors) without introducing additional com-
plexity measures.

e We prove a separation result for Tsybakov noise vs the Bernstein class condition, establishing
that the respective minimax label complexities can be significantly different. This contrasts
with passive learning, where they are known to be equivalent up to a logarithmic factor.

The algorithmic techniques underlying the proofs of the most-interesting of our upper bounds
involve a combination of the disagreement-based strategy of Cohn, Atlas, and Ladner (1994) (and
the analysis thereof by Hanneke, 2011, and Wiener, Hanneke, and El-Yaniv, 2014), along with a
repeated-querying technique of Kiéridinen (2006), modified to account for variations in label vari-
ances so that the algorithm does not waste too many queries determining the optimal classification
of highly-noisy points; this modification represents the main algorithmic innovation in this work.
In a supporting role, we also rely on auxiliary lemmas on the construction of e-nets and e-covers
based on random samples, and the use of these to effectively discretize the instance space. The
mathematical techniques underlying the proofs of the lower bounds are largely taken directly from
the literature. Most of the lower bounds are established by a combination of a technique originating
with Kédridinen (2006) and refined by Beygelzimer, Dasgupta, and Langford (2009) and Hanneke
(2011, 2014), and a technique of Raginsky and Rakhlin (2011) for incorporating a complexity mea-
sure into the lower bounds.

We note that, while the present work focuses on the distribution-free setting, in which the
marginal distribution over the instance space is unrestricted, our results reveal that low-noise set-
tings can still benefit from distribution-dependent analysis, as expected given the aforementioned
observations by Dasgupta (2005) for the realizable case. For instance, under Tsybakov noise, it is
often possible to obtain stronger upper bounds in low-noise regimes under assumptions restricting
the distribution of the unlabeled data (see e.g., Balcan, Broder, and Zhang, 2007). We leave for fu-
ture work the important problem of characterizing the minimax label complexity of active learning
in the general case for an arbitrary fixed marginal distribution over the instance space.

1.3 Outline

The rest of this article is organized as follows. Section 2 introduces the formal setting and basic
notation used throughout, followed in Section 3 with the introduction of the noise models studied
in this work. Section 4 defines a combinatorial complexity measure — the star number — in terms of
which we will express the label complexity bounds below. Section 5 provides statements of the main
results of this work: upper and lower bounds on the minimax label complexities of active learning
under each of the noise models defined in Section 3. That section also includes a discussion of the
results, and a brief sketch of the arguments underlying the most-interesting among them. Section 6
compares the results from Section 5 to the known results on the minimax sample complexity of
passive learning, revealing which scenarios yield improvements of active over passive. Next, in
Section 7, we go through the various results on the label complexity of active learning from the
literature, along with their corresponding complexity measures (most of which are distribution-
dependent or data-dependent). We argue that all of these complexity measures are exactly equal to
the star number when maximized over the choice of distribution or data set. This section also relates
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the star number to the well-known concept of doubling dimension, in particular showing that the
doubling dimension is bounded if and only if the star number is finite.

We note that the article is written with the intention that it be read in-order; for instance, while
Appendix B contains proofs of the results in Section 5, those proofs refer to quantities and results
introduced in Sections 6 and 7 (which follow Section 5, but precede Appendix B).

2. Definitions

The rest of this paper makes use of the following formal definitions. There is a space X, called
the instance space. We suppose X is equipped with a o-algebra By, and for simplicity we will
assume {{z} : x € X} C By. There is also a set Y = {—1,+1}, known as the label space. Any
measurable function h : X — ) is called a classifier. There is an arbitrary set C of classifiers,
known as the hypothesis class. To focus on nontrivial cases, we suppose |C| > 3 throughout.

For any probability measure P over X x ) and any z € X, define n(z; P) =P(Y = +1|X =
z) for (X,Y) ~ P, and let f5(z) = sign(2n(x; P)—1) denote the Bayes optimal classifier," where
sign(t) = +1if ¢ > 0, and sign(t) = —1if ¢t < 0. Define the error rate of a classifier h with respect
to Paserp(h) = P((z,y) : h(x) # y).

In the learning problem, there is a target distribution Pxy over X X ), and a data sequence
(X1,Y1),(X2,Y),. .., which are independent Pxy -distributed random variables. However, in the
active learning protocol, the Y; values are initially “hidden” until individually requested by the
algorithm (see below). We refer to the sequence X1, Xo, ... as the unlabeled data sequence.”> We
will sometimes denote by P the marginal distribution of Pxy over X: thatis, P(-) = Pxy (- x V).

In the pool-based active learning protocol,’> we define an active learning algorithm A as an
algorithm taking as input a budget n € N U {0}, and proceeding as follows. The algorithm initially
has access to the unlabeled data sequence X1, Xo,.... If n > 0, the algorithm may then select an
index 71 € N and request to observe the label Y;,. The algorithm may then observe the value of Y;,,
and if n > 2, then based on both the unlabeled sequence and this new observation Y;,, it may select
another index 72 € N and request to observe Y;,. This continues for a number of rounds at most n
(i.e., it may request at most n labels), after which the algorithm must halt and produce a classifier
h,,. More formally, an active learning algorithm is defined by a random sequence {i;};°; in N,
a random variable N in N, and a random classifier h,,, satisfying the following properties. Each
i; is conditionally independent from {(X;,Y;)}°; given {i; ;;11, 1Y ;;11, and {X;}°,. The
random variable N always has N < n, and for any k € {0,...,n}, 1[N = k] is independent from

1. Since conditional probabilities are only defined up to probability zero differences, there can be multiple valid func-
tions 7(-; P) and fp, with any two such functions being equal with probability one. As such, we will interpret
statements such as “fp € C” to mean that rhere exists a version of f7 contained in C, and similarly for other claims
and conditions for f5 and n(-; P).

2. Although, in practice, we would expect to have access to only a finite number of unlabeled samples, we expect
this number would often be quite large (as unlabeled samples are considered inexpensive and abundant in many
applications). For simplicity, and to focus the analysis purely on the number of labels required for learning, we
approximate this scenario by supposing an inexhaustible source of unlabeled samples. We leave open the question
of the number of unlabeled samples sufficient to obtain the minimax label complexity; in particular, we expect the
number of such samples used by the methods obtaining our upper bounds to be quite large indeed.

3. Although technically we study the pool-based active learning protocol, all of our results apply equally well to the
stream-based (selective sampling) model of active learning (in which the algorithm must decide whether or not to
request the label Y; before observing any X; with j > ¢ or requesting any Y; with j > 7).
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{(X;,Y3)}e2, given {i;}*_,, {Vi }5_ |, and {X;}2, . Finally, h, is independent from {(X;, ;)}32,

given N, {i; ;-V:p Y3, ;\/:1’ and {X;}°,.
We are now ready for the definition of our primary quantity of study: the minimax label com-
plexity. In the next section, we define several well-known noise models as specifications of the set

D referenced in this definition.

Definition 1 For a given set D of probability measures on X x Y, Ve > 0, V6 € [0, 1], the minimax
label complexity (of active learning) under D with respect to C, denoted Ap(e,6), is the smallest
n € N U {0} such that there exists an active learning algorithm A with the property that, for every
Pxy € D, the classifier h,, produced by A(n) based on the (independent Pxvy -distributed) data
sequence (X1,Y7), (Xo,Ys),... satisfies

P (erpxy (ﬁn> - }1LI€1£ erp,, (h) > 5) <.
If no such n exists, we define Ap(e,d) = oo.

Following Vapnik and Chervonenkis (1971); Anthony and Bartlett (1999), we say a collection
of sets 7 C 2% shatters a sequence S € X* (for k € N)if {ANS : A c T} = 25 The VC
dimension of T is then defined as the largest k¥ € NU{0} such that there exists S € X'* shattered by
T; if no such largest k exists, the VC dimension is defined to be co. Overloading this terminology,
the VC dimension of a set H of classifiers is defined as the VC dimension of the collection of sets
{{z : h(x) = +1} : h € H}. Throughout this article, we denote by d the VC dimension of C. We
are particularly interested in the case d < oo, in which case C is called a VC class.

For any set H of classifiers, define DIS(H) = {z € X : 3h,g € H s.t. h(x) # g(z)}, the
region of disagreement of ‘H. Also, for any classifier h, any » > 0, and any probability measure P
on X, define Bp(h,r) = {g € C: P(xz: g(x) # h(x)) < r}, the r-ball centered at h.

Before proceeding, we introduce a few additional notational conventions that help to simplify
the theorem statements and proofs. For any R-valued functions f and g, we write f(z) < g(x)
(or equivalently g(x) 2 f(x)) to express the fact that there is a universal finite numerical constant
¢ > 0 such that f(x) < cg(x). For any z € [0, c0], we define Log(z) = max{In(x), 1}, where
In(0) = —oo and In(oco) = oo. For simplicity, we define ﬁ@ = 00, but in any other context, we
always define 0- oo = 0, and also define §j = oo for any a > 0. For any function ¢ : R — R, we use
the notation “lim.,_,o ¢(7)” to indicating taking the limit as y approaches 0 from above: i.e., y | 0.
For a,b € R, we denote a A b = min{a, b} and a Vb = max{a, b}. Finally, we remark that some of
the claims below technically require additional qualifications to guarantee measurability of certain
quantities (as is typically the case in empirical process theory); see Blumer, Ehrenfeucht, Haussler,
and Warmuth (1989); van der Vaart and Wellner (1996, 2011) for some discussion of this issue. For
simplicity, we do not mention these issues in the analysis below; rather, we implicitly qualify all of
these results with the condition that C is such that all of the random variables and events arising in
the proofs are measurable.

3. Noise Models

We now introduce the noise models under which we will study the minimax label complexity of
active learning. These are defined as sets of probability measures on X x ), corresponding to
specifications of the set D in Definition 1.
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e (Realizable Case) Define RE as the collection of Pxy for which f;;xy € Cand 2n(-; Pxy)—
1= fp,, (+) (almost everywhere w.r.t. P).

e (Bounded Noise) For 5 € [0,1/2), define BN(3) as the collection of joint distributions Pxy
over X x Y suchthat f5 € Cand

P(x:[n(x;Pxy) —1/2[21/2-8) = 1.

e (Tsybakov Noise) For a € [1,00) and @ € (0, 1), define TN(a, «v) as the collection of joint
distributions Pxy over X' x Y such that f5 € Cand Vy > 0,

P (z: |n(a; Pxy) — 1/2] < 7) < a/y*/ (=),
where @’ = (1 — a)(Qa)a/(l—a)al/(l—a)‘

e (Bernstein Class Condition) For a € [1,00) and « € [0, 1], define BC(a, @) as the collection
of joint distributions Pxy over X x Y such that, hp,, € C for which Vh € C,

P(x: h(z) # hpyy (z)) < a(erPXY (h) — CI'Pxy (hPXY))a'

e (Benign Noise) For v € [0,1/2], define BE(v) as the collection of all joint distributions Pxy
over X x Y such that f5 = € Canderpy, (f5,,) <v.

e (Agnostic Noise) For v € [0, 1], define AG(v) as the collection of all joint distributions Pxy
over X x )Y such that infycc erp,, (h) < wv.

It is known that RE C BN(8) C€ BC(1/(1 — 20),1), and also that RE C TN(a,a) C
BC(a, ar). Furthermore, TN(a, «) is equivalent to the conditions in BC(a, «v) being satisfied for
all classifiers h, rather than merely those in C (Mammen and Tsybakov, 1999; Tsybakov, 2004;
Boucheron, Bousquet, and Lugosi, 2005). All of RE, BN(S), and TN(a, ) are contained in
Uy<1/2 BE(v), and in particular, BN(8) € BE(8).

The realizable case is the simplest setting studied here, corresponding to the “optimistic case”
of Vapnik (1998) or the PAC model of Valiant (1984). The bounded noise model has been studied
under various names (e.g., Massart and Nédélec, 2006; Giné and Koltchinskii, 2006; Kédridinen,
2006; Koltchinskii, 2010; Raginsky and Rakhlin, 2011); it is sometimes referred to as Massart’s
noise condition. The Tsybakov noise condition was introduced by Mammen and Tsybakov (1999) in
a slightly stronger form (in the related context of discrimination analysis) and was distilled into the
form stated above by Tsybakov (2004). There is now a substantial literature on the label complexity
under this condition, both for passive learning and active learning (e.g., Mammen and Tsybakov,
1999; Tsybakov, 2004; Bartlett, Jordan, and McAuliffe, 2006; Koltchinskii, 2006; Balcan, Broder,
and Zhang, 2007; Hanneke, 2011, 2012, 2014; Hanneke and Yang, 2012). However, in much of this
literature, the results are in fact established under the weaker assumption given by the Bernstein class
condition (Bartlett, Mendelson, and Philips, 2004), which is known to be implied by the Tsybakov
noise condition (Mammen and Tsybakov, 1999; Tsybakov, 2004). For passive learning, it is known
that the minimax sample complexities under Tsybakov noise and under the Bernstein class condition
are equivalent up to a logarithmic factor. Interestingly, our results below imply that this is not the
case for active learning. The benign noise condition (studied by Hanneke, 2009b) requires only that
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the Bayes optimal classifier be contained within the hypothesis class, and that the Bayes error rate
be at most the value of the parameter . The agnostic noise condition (sometimes called adversarial
noise in related contexts) is the weakest of the noise assumptions studied here, and admits any
distribution for which the best error rate among classifiers in the hypothesis class is at most the
value of the parameter v. This model has been widely studied in the literature, for both passive and
active learning (e.g., Vapnik and Chervonenkis, 1971; Vapnik, 1982, 1998; Kearns, Schapire, and
Sellie, 1994; Kalai, Klivans, Mansour, and Servedio, 2005; Balcan, Beygelzimer, and Langford,
2006; Hanneke, 2007b,a; Awasthi, Balcan, and Long, 2014).

4. A Combinatorial Complexity Measure

There is presently a substantial literature on distribution-dependent bounds on the label complexities
of various active learning algorithms. These bounds are expressed in terms of a variety of interesting
complexity measures, designed to capture the behavior of each of these particular algorithms. These
measures of complexity include the disagreement coefficient (Hanneke, 2007b), the reciprocal of
the splitting index (Dasgupta, 2005), the extended teaching dimension growth function (Hanneke,
2007a), and the version space compression set size (El-Yaniv and Wiener, 2010, 2012). These
quantities have been studied and bounded for a variety of learning problems (see Hanneke, 2014,
for a summary). They each have many interesting properties, and in general can exhibit a wide
variety of behaviors, as functions of the distribution over X’ (and in some cases, the distribution
over X X ))) and ¢, or in some cases, the data itself. However, something remarkable happens when
we maximize each of these complexity measures over the choice of distribution (or data set): they
all become equal to a simple and easy-to-calculate combinatorial quantity (see Section 7 for proofs
of these equivalences). Specifically, consider the following definition.*

Definition 2 Define the star number s as the largest integer s such that there exist distinct points
Z1,...,xs € X and classifiers ho,hi,...,hs € C satisfying the property that ¥i € {1,..., s},
DIS({ho, hi}) N{z1,...,xs} = {xi}; if no such largest integer exists, define s = oc.

For any set A of functions X — Y, anyt € N, z1,...,2¢4 € X, and hg,h1,...,ht € H,
we will say {x1,...,z} is a star set for H, witnessed by {hg,h1,...,h}, if Vi € {1,...,t},
DIS({ho, hi}) N {z1,...,x+} = {x;}. For brevity, in some instances below, we may simply say
that {x1, ..., .} is a star set for H, indicating that 3ho, hy,...,h; € H such that {z1,..., 2} is
a star set for 4, witnessed by {hg, h1, ..., h;}. We may also say that {z1, ..., .} is a star set for
H centered at hy € H if 3hy, ..., hy € H such that {z1,..., 2} is a star set for H, witnessed by
{ho,h1,...,ht}. For completeness, we also say that {} (the empty sequence) is a star set for H
(witnessed by {ho} for any hg € H), for any nonempty 7. In these terms, the star number of C is
the maximum possible cardinality of a star set for C, or oo if no such maximum exists.

Remark: The star number can equivalently be described as the maximum possible degree in the
data-induced one-inclusion graph for C (see Haussler, Littlestone, and Warmuth, 1994), where the

4. A similar notion previously appeared in a lower-bound argument of Dasgupta (2005), including a kind of distribution-
dependent version of the “star set” idea. Indeed, we explore these connections formally in Section 7, where we addi-
tionally prove this definition is exactly equivalent to a quantity studied by Hanneke (2007a) (namely, the distribution-
free version of the extended teaching dimension growth function), and has connections to several other complexity
measures in the literature.
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maximum is over all possible data sets and nodes in the graph.’ To relate this to the VC dimension,
one can show that the VC dimension is the maximum possible degree of a hypercube in the data-
induced one-inclusion graph for C (maximized over all possible data sets). From this, it is clear that
s > d. Indeed, any set {1, ...,z } shatterable by C is also a star set for C, since some hy € C
classifies all £ points —1, and for each x;, some h; € C has h;(z;) = +1 while h;(z;) = —1 for
every j # i (where h; is guaranteed to exist by shatterability of the set). On the other hand, there is
no general upper bound on s in terms of d, and the gap between s and d can generally be infinite.

Examples: Before continuing, we briefly go through a few simple example calculations of the
star number. For the class of threshold classifiers on R (i.e., C = {x — 21, )(z) — 1 : t € R}),
we have s = 2, as {x1, x5} is a star set for C centered at 21[15700) —lifand only if z; < t < z9,
and any set {x1, x2, x3} cannot be a star set for C centered at any given 21|t 00) — 1 since, of the (at
least) two of these points on the same side of ¢, any threshold classifier disagreeing with 21, ) — 1
on the one further from ¢ must also disagree with 21, ) — 1 on the one closer to ¢. In contrast, for
the class of interval classifiers on R (i.e., C = {x = 215 4(2) —1: —00 < a < b < 00}), we have
§ = 00, since for any distinct points xg, z1,...,xs € R, {z1,..., 2} is a star set for C witnessed
by {2150 20] = 1,21y 2q] — 15+ - -5 21, 2,] — 1}. Itis an easy exercise to verify that we also have
s = oo for the classes of linear separators on RF (k > 2) and axis-aligned rectangles on RF (k > 1),
since the above construction for interval classifiers can be embedded into these spaces, with the star
set lying within a lower-dimensional manifold in R* (see Dasgupta, 2004, 2005; Hanneke, 2014).
As an intermediate case, where s has a range of values, consider the class of intervals of width
at least w € (0,1) (ie., C = {z = 21g4(z) —1: —00 < a < b < 00,b—a > w}), for the
space X = [0, 1]. In this case, we can show that |2/w]| < s < |2/w] + 2, as follows. We may note
that letting k = |2/(w +¢)| + 1 (for ¢ > 0), and taking x; = (w +¢)(i — 1)/2 for 1 < i < k,
we have that {x1,..., 2} is a star set for C, witnessed by {21[_9,y —w] — 1,213, /2,21 w/2] —
L., 21 —w/2,2p4w/2) — L1} Thus, taking ¢ — 0 reveals that s > [2/w]. On the other hand,
for any ¥’ € N with £/ > 2, and points x1, ...,z € [0,1], suppose {1, ..., ) } is a star set for
C witnessed by {hg, h1, ..., hi }. Without loss of generality, suppose x1 < xg < --- < xps. First
suppose hg classifies all of these points —1. Note that, for any i € {3,...,k’}, since the interval
corresponding to h;_1 has width at least w and contains x;_; but not x;_ or z;, we have ; —x;_1 >
max{0,w — (x;—1 — x;—2)}. Thus, 1 > Zf/:Q Ti— Ti_1 > To— T+ 25;3 max{0,w — (x;—1 —
2 9)} > (K =2w—"FZ wi—ai 1 = (K —2)w— (21 —w2), so that 21—z > (K —2)w—1.
But 21 — @9 < 1, so that k' < 2/w + 2. Since £’ is an integer, this implies £’ < |2/w] + 2.
For the remaining case, if g classifies some x; as +1, then let z;, = min{xz; : ho(z;) = +1}
and z;, = max{z; : ho(x;) = +1}. Note that, if iy > 1, then for any z < x;,_1, any h € C
with h(z;,) = h(x) = +1 # ho(x) must have h(x;,—1) = +1 # ho(xiy—1), so that {z, x;,—1} C
DIS({h, ho}). Therefore, fiz; < x;,_1 (since otherwise DIS({h;, ho}) N {x1,...,zp} = {x;}
would be violated), so that 9 < 2. Symmetric reasoning implies 77 > k' — 1. Similarly, if
dx € (x4, i, ), thenany h € C with h(x) = —1 # ho(x) must have either h(x;,) = —1 # ho(xi,)
or h(zi,) = —1 # ho(x;,), so that either {z, z;,} C DIS({h,ho}) or {x,x;,} C DIS({h,ho}).
Therefore, Ax; € (x4, 74, ) (since again, DIS({h;, ho}) N {1, ..., 7} = {x;} would be violated),

5. The maximum degree in the one-inclusion graph was recently studied in the context of teaching complexity by Fan
(2012). However, using the data-induced one-inclusion graph of Haussler, Littlestone, and Warmuth (1994) (rather
than the graph based on the full space X’) can substantially increase the maximum degree by omitting certain highly-
informative points.
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so that i; € {ig,ip + 1}. Combined, these facts imply ¥’ < i3 +1 < ip+2 <4 < [2/w] + 2.
Altogether, we have s < |2/w] + 2.

5. Main Results

We are now ready to state the main results of this article: upper and lower bounds on the minimax
label complexities under the above noise models. For the sake of making the theorem statements
more concise, we abstract the dependence on logarithmic factors in several of the upper bounds into
a simple “polylog(z)” factor, meaning a value < Log®(x), for some k € [1,00) (in fact, all of
these results hold with values of £ < 4); the reader is referred to the proofs for a description of
the actual logarithmic factors this polylog function represents, along with tighter expressions of the
upper bounds. The formal proofs of all of these results are included in Appendix B.

Theorem 3 Foranye € (0,1/9), 6 € (0,1/3),

max < min 5,1 ,d,Log | min 1,|C| < Agrg(e,9) < min 5,g,i Log 1 .
€ € ¢’ Log(s) €

Theorem 4 Forany 3 € [0,1/2), e € (0,(1 —28)/24), § € (0,1/24],

(1_12‘@2 max {min {5’ 1 —825 } BLog (;) ,d}
S Aeng)(€:0) S (1—12’@2 min {5, (1—€2md} polylog <$) )

Theorem 5 For any a € [4,00), a € (0,1), € € (0,1/(24a"/®)), and § € (0,1/24],
ifo<a<1/2

1 22« 1 1 22« d
a? (= d+ Log [ = S AtN(a,)(6:6) S a (= d - polylog | —
€ 0 € €d

and if 1/2 < a < 1,
1 2—2« 1 2a—1 1
a? <5> max {min {5, al/%} Log <6> ,d

) 1 2—2a 5 1 200—1 d
< < - i I — . i
S AN(a,e)(€,0) Sa <5> mln{d, al/ag} d - polylog (6(5> .

Theorem 6 For any a € [4,00), a € (0,1), € € (0,1/(24a/*)), and § € (0,1/24],
fo<a<1/2

1 2—2« 1 1 2—2« 1 1
a (= d+Log | = S ABc(a,)(6:6) S a (= min { s, — » d-polylog [ — |,
€ 1) € ae el

and if1/2 < a <1,
1 2—2a 1 2a—1 1
2 (L : -
a (€> max{mln {5, al/%} Log <6) ,d
- ) 1 2—2a . 1 1
S ABC(a,0)(6:6) Sa - min < s, ps d - polylog =)

11
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Theorem 7 Forany v € [0,1/2), ¢ € (0,(1 —2v)/24), and § € (0,1/24],

P ) . 1 2 _ d d
> <d + Log (5)) -+ min {5, 5} S Asew)(€,0) S (€2d + min {s, 6}) polylog <€5> .

Theorem 8 Forany v € [0,1/2), ¢ € (0,(1 —2v)/24), and 6 € (0,1/24],

2
I/2<d+Log<1>>+min{s,1}
€ 4] €
< Mo (©6) <minds V(72 1) - polylog (L
~ DAGW)\E0) S U +e o2 polylog )

Here, we mention a few noteworthy observations and comments regarding the above theorems.
We sketch the main innovations underlying the active learning algorithm achieving these upper
bounds in Section 5.1. Sections 6 and 7 include further detailed and thorough comparisons of each
of these results to those in the prior literature on passive and active learning.

Comparison to the previous best known results: Aside from Theorems 6 and 8, each of the
above results offers some kind of refinement over the previous best known results on the label
complexity of active learning. Some of these refinements are relatively mild, such as those for the
realizable case and bounded noise. However, our refinements under Tsybakov noise and benign
noise are far more significant. In particular, perhaps the most surprising and interesting of the above
results are the upper bounds in Theorem 5, which can be considered the primary contribution of this
work.

As discussed above, the prior literature on noise-robust active learning is largely rooted in the
intuitions and techniques developed for the realizable case. As indicated by Theorem 3, there is a
wide spread of label complexities for active learning problems in the realizable case, depending on
the structure of the hypothesis class. In particular, when s < oo, we have O(Log(1/¢)) label com-
plexity in the realizable case, representing a nearly-exponential improvement over passive learning,
which has ©(1/¢) dependence on e. On the other hand, when 5 = co, we have Q(1/¢) minimax la-
bel complexity for active learning, which is the same dependence on € as known for passive learning
(see Section 6). Thus, for active learning in the realizable case, some hypothesis classes are “easy”
(such as threshold classifiers), offering strong improvements over passive learning, while others are
“hard” (such as interval classifiers), offering almost no improvements over passive.

With the realizable case as inspiration, the results in the prior literature on general noise-robust
active learning have all continued to reflect these distinctions, and the label complexity bounds in
those works continue to exhibit this wide spread. In the case of Tsybakov noise, the best general
results in the prior literature (from Hanneke and Yang, 2012; Hanneke, 2014) correspond to an up-
per bound of roughly a? (%) 72 min {5, a%a} d - polylog (%) (after converting those complexity
measures into the star number via the results in Section 7 below). When s < oo, this has dependence
O(£2%=2) on ¢, which reflects a strong improvement over the ©(¢®~2) minimax sample complexity
of passive learning for this problem (see Section 6). On the other hand, when s = oo, this bound
is é(sa_Q), so that as in the realizable case, the bound is no better than that of passive learning
for these hypothesis classes. Thus, the prior results in the literature continue the trend observed in
the realizable case, in which the “easy” hypothesis classes admit strong improvements over pas-
sive learning, while the “hard” hypothesis classes have a bound that is no better than the sample
complexity of passive learning.

12
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With this as background, it comes as quite a surprise that the upper bounds in Theorem 5 are
always smaller than the corresponding minimax sample complexities of passive learning, in terms
of their asymptotic dependence on ¢ for 0 < o < 1. Specifically, these upper bounds reveal a
label complexity O(2*~2) when s < oo, and O(e2*~2 V (1/¢)) when 5 = co. Comparing to the
(:)(50‘_2) minimax sample complexity of passive learning, the improvement for active learning is by
a factor of ©(¢~*) when s < oo, and by a factor of ©(¢~™™®1-}) when 5 = oco. As a further
surprise, when 0 < a < 1/2 (the high-noise regime), we see that the distinctions between active
learning problems of a given VC dimension essentially vanish (up to logarithmic factors), so that the
familiar spread of label complexities from the realizable case is no longer present. Indeed, in this
latter case, all hypothesis classes with finite VC dimension exhibit the strong improvements over
passive learning, previously only known to hold for the “easy” hypothesis classes (such as threshold
classifiers): that is, O(£2%~2) label complexity.

Further examining these upper bounds, we see that the spread of label complexities between
“easy” and “hard” hypothesis classes increasingly re-emerges as o approaches 1, beginning with
a = 1/2. This transition point is quite sensible, since this is precisely the point at which the
label complexity has dependence on € of (:)(1 /€), which is roughly the same as the minimax label
complexity of the “hard” hypothesis classes in the realizable case, which is, after all, included in
TN(a, ). Thus, as « increases above 1/2, the “easy” hypothesis classes (with s < oo) exhibit
stronger improvements over passive learning, while the “hard” hypothesis classes (with s = 00)
continue to exhibit precisely this 6 (%) behavior. In either case, the label complexity exhibits an
improvement in dependence on € compared to passive learning for the same « value. But since
the label complexity of passive learning decreases to e (%) as o — 1, we naturally have that for
the “hard” hypothesis classes, the gap between the passive and active label complexities shrinks
as « approaches 1. In contrast, the “easy” hypothesis classes exhibit a gap between passive and
active label complexities that becomes more pronounced as o approaches 1 (with a near-exponential
improvement over passive learning exhibited in the limiting case, corresponding to bounded noise).

This same pattern is present, though to a lesser extent, in the benign noise case. In this case, the
best general results in the prior literature (from Dasgupta, Hsu, and Monteleoni, 2007; Hanneke,

} Vi-l-&‘
(again, after converting those complexity measures into the star number via the results in Section 7

2007a, 2014) correspond to an upper bound of roughly min {5 L } (;’—5 + 1) d - polylog (%)

below). When s < oo, the dependence on v and ¢ is roughly ) (;’—;) (aside from logarithmic factors

and constants, and for v > ¢). However, when s = oo, this dependence becomes roughly S (5%)
which is the same as in the minimax sample complexity of passive learning (see Section 6). Thus,
for these results in the prior literature, we again see that the “easy” hypothesis classes have a bound
reflecting improvements over passive learning, while the bound for the “hard” hypothesis classes
fail to reflect any improvements over passive learning at all.

In contrast, consider the upper bound in Theorem 7. In this case, when v > /¢ (again, the
high-noise regime), for all hypothesis classes with finite VC dimension, the dependence on v and
¢ is roughly © (Z—;) (aside from logarithmic factors and constants). Again, this makes almost no
distinction between “easy” hypothesis classes (with s < oo) and “hard” hypothesis classes (with
s = o0), and instead always exhibits the strongest possible improvements (up to logarithmic fac-
tors), previously only known to hold for the “easy” classes (such as threshold classifiers): namely,
reduction in label complexity by roughly a factor of 1/ compared to passive learning. The improve-
ments in this case are typically milder than we found in Theorem 5, but noteworthy nonetheless.

13
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Again, as v decreases below /, the distinction between “easy” and “hard” hypothesis classes be-
gins to re-emerge, with the harder classes maintaining a 6 (%) dependence (which is equivalent to
the realizable-case label complexity for these classes, up to logarithmic factors), while the easier
classes continue to exhibit the © (g—i) behavior, approaching O (polylog (1)) as v shrinks.

The dependence on §: One remarkable fact about Arg(e, d) is that there is no significant de-
pendence on § in the optimal label complexity for the given range of §.° Note that this is not the
case in noisy settings, where the lower bounds have an explicit dependence on §. In the proofs,
this dependence on ¢ is introduced via randomness of the labels. However, as argued by Kéiridinen
(2006), a dependence on ¢ is sometimes still required in Ap(e,d), even if we restrict D to those
Pxy € AG(v) inducing deterministic labels: that is, n(z; Pxy) € {0, 1} for all x.

Spanning the gaps: All of these results have gaps between the lower and upper bounds. It is
interesting to note that one can construct examples of hypothesis classes spanning these gaps, for
Theorems 3, 4, 5, and 7 (up to logarithmic factors). For instance, for sufficiently large d and s
and sufficiently small ¢ and ¢, these upper bounds are tight (up to logarithmic factors) in the case
where C = {z — 21g(x) —1: S C{1,...,s},|S] < d}, for ¥ = N (taking inspiration from a
suggested modification by Hanneke, 2014, of the proof of a related result of Raginsky and Rakhlin,
2011). Likewise, these lower bounds are tight (up to logarithmic factors) in the case that ¥ = N
and C = {z — 21g(z) —1: S € 2 U {{i} : d+ 1 < i < s}}.7 Thus, these upper and lower
bounds cannot be significantly refined (without loss of generality) without introducing additional
complexity measures to distinguish these cases. For completeness, we include proofs of these claims
in Appendix D. It immediately follows from this (and monotonicity of the respective noise models
in C) that the upper and lower bounds in Theorems 3, 4, 5, and 7 are each sometimes tight in the
case § = 00, as limiting cases of the above constructions: that is, the upper bounds are tight (up to
logarithmic factors) for C = {z — 21g(x) — 1 : S C N, |S| < d}, and the lower bounds are tight
(up to logarithmic factors) for C = {z +— 21 g(z)—1: S € 2B U{{i} : d4+1 <i < oo}}. Itis
interesting to note that the above space C for which the upper bounds are tight can be embedded in a
variety of hypothesis classes in common use in machine learning (while maintaining VC dimension
< d and star number < s): for instance, in the case of s = oo, this is true of linear separators in R3¢
and axis-aligned rectangles in R2?. It follows that the upper bounds in these theorems are tight (up
to logarithmic factors) for each of these hypothesis classes.

Separation of TN (a, o) and BC(a, a): Another interesting implication of these results is a
separation between the noise models TN(a, o) and BC(a, ) not previously noted in the literature.
Specifically, if we consider any class C comprised of only the s + 1 classifiers in Definition 2,
then one can show® that (for s > 3), for any o € (0,1], a € [4,00), ¢ € (0,1/(4a'/®)), and

o€ (0, 1/].6],
A (€.6) 2 a® ! o min < & N Lo !
BC(a,a)\&:Y) < c " qed g 5/

6. We should expect a more significant dependence on § near 1, since one case easily prove that Are(e,d) — 0 as
0— 1

7. Technically, for Theorems 4 and 7, we require slightly stronger versions of the lower bound to establish tightness for
B or v near 0: namely, adding the lower bound from Theorem 3 to these lower bounds. The validity of this stronger
lower bound follows immediately from the facts that RE C BN(3) and RE C BE(v).

8. Specifically, this follows by taking { = %(4€)*, 8 = 3 — —25¢'~*,and k = min{s — 1, [1/¢]} in Lemma 26 of

Appendix A.2, and noting that the resulting set of distributions RR(k, ¢, 3) is contained in BC(a, ) for this C.
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In particular, when 5 > as% we have Apc(q,a)(€,6) 2 ae®2Log(1/d), which is larger than the

upper bound on Ay (g,q) (€, §). Furthermore, when s = oo, this lower bound has asymptotic depen-
dence on ¢ that is Q(¢%~?), which is the same dependence found in the sample complexity of passive
learning, up to a logarithmic factor (see Section 6 below). Comparing this to the upper bounds in
Theorem 5, which exhibit asymptotic dependence on ¢ as Ary(q,q)(€,0) = O(emin{20—1,0}—1)
when s = oo, we see that for this class, any o € (0,1) has Apy(q,0)(€,0) < Apg(a,a)(€;d). One
reason this separation is interesting is that most of the existing literature on active learning under
TN(a, o) makes use of the noise condition via the fact that it implies P(z : h(z) # fp,, (7)) <
a(erpyy (h) —erpyy, (f5,, )" forall h € C: thatis, TN(a, «) € BC(a, ). This separation indi-
cates that, to achieve the optimal performance under TN(a, o), one needs to consider more-specific
properties of this noise model, beyond those satisfied by BC(a, ). Another reason this separation
is quite interesting is that it contrasts with the known results for passive learning, where (as we
discuss in Section 6 below) the sample complexities under these two noise models are equivalent
(up to an unresolved logarithmic factor).

Gaps in Theorems 6 and 8, and related open problems: We conjecture that the dependence on
d and s in the upper bounds of Theorem 6 can be refined in general (where presently it is linear in
sd). More specifically, we conjecture that the upper bound can be improved to

A (¢,0) < a? E 2_QCymin S A4 olylo 1
BC(a,a)\&»9) S - ’ qed polylog )’

though it is unclear at this time as to how this might be achieved. The above example (separating
BC(a, a) from TN(a, «v)) indicates that we generally cannot hope to reduce the upper bound on the
label complexity for BC(a, o) much beyond this.

As for whether the form of the upper bound on Aq,)(€,6) in Theorem 8 can generally be
improved to match the form of the upper bound for Apg,) (¢,0), this remains a fascinating open
question. We conjecture that at least the dependence on d and s can be improved to some extent
(where presently it is linear in ds).

Minutiae: We note that the restrictions to the ranges of € and ¢ in the above results are required
only for the lower bounds (aside from d € (0, 1], € > 0), as are the restrictions to the ranges of the
parameters a, «, and v, aside from the constraints in the definitions in Section 3; the upper bounds
are proven without any such restrictions in Appendix B. Also, several of the upper bounds above
(e.g., Theorems 5 and 7) are slightly looser (by logarithmic factors) than those actually proven in
Appendix B, which are typically stated in a different form (e.g., with factors of dLog (1) +Log ().
rather than simply d - polylog (%) ). We state the weaker results here purely to simplify the theorem
statements, referring the interested reader to the proofs for the refined versions. However, aside
from Theorem 3, we believe it is possible to further optimize the logarithmic factors in all of these
upper bounds.

We additionally note that we can also obtain results by the subset relations between the noise
models. For instance, since RE C BN(3) C BE(8) € AG(f), in the case 3 is close to 0 we can
increase the lower bounds in Theorems 4, 7, and 8 based on the lower bound in Theorem 3: that is,
forv > (5>0,

AAg(V)(€,5) > ABE(V)(€7 5) > ABN(ﬁ)(57 (5) > ARE(5,5) Z max {min {5, i} ,d} .
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Similarly, since RE is contained in all of the noise models studied here, Log (min {1, |C|}) can also
be included as a lower bound in each of these results. Likewise, in the cases that a is very large or
« is very close to 0, we can get a more informative upper bound in Theorem 5 via Theorem 7, since
TN(a,«) € BE(1/2). For simplicity, in many cases we have not explicitly included the various
compositions of the above results that can be obtained in this way (with only a few exceptions).

5.1 The Strategy behind Theorems 5 and 7

The upper bounds in Theorems 5 and 7 represent the main results of this work, and along with the
upper bound in Theorem 4, are based on a general argument with essentially three main compo-
nents. The first component is a more-sophisticated variant of a basic approach introduced to the
active learning literature by Kééridinen (2006): namely, reduction to the realizable case via repeat-
edly querying for the label at a point in X until its Bayes optimal classification can be determined
(based on a sequential probability ratio test, as studied by Wald, 1945, 1947). Of course, in the
present model of active learning, repeatedly requesting a label Y; yields no new information be-
yond requesting Y; once, since we are not able to resample from the distribution of Y; given X; (as
Kaidridginen, 2006, does). To resolve this, we argue that it is possible to partition the space & into
cells, in a way such that f5__ is nearly constant in the vast majority of cells (without direct knowl-
edge of f7*>XY or P); this is essentially a data-dependent approximation to the recently-discovered
finite approximability property of VC classes (Adams and Nobel, 2012). Given this partition, for
a given point X;, we can find many other points X; in the same cell of the partition with X;, and
request labels for these points until we can determine what the majority label for the cell is. We
show that, with high probability, this value will equal f;;xy(Xi), so that we can effectively use
these majority labels in an active learning algorithm for the realizable case.

However, we note that in the case of TN(a, «), if we simply apply this repeated querying strat-
egy to random P-distributed samples, the resulting label complexity would be too large, and we
would sometimes expect to exhaust most of the queries determining the optimal labels in very noisy
regions (i.e., in cells of the partition where 7(-; Pxy) is close to 1/2 on average). This is because
Tsybakov’s condition allows that such regions can have non-negligible probability, and the number
of samples required to determine the majority value of a +1 random variable becomes unbounded as
its mean approaches zero. However, we can note that it is also less important for the final classifier h
to agree with /5 on these high-noise points than it is for low-noise points, since classifying them

opposite from f7__ has less impact on the excess error rate erpy, (h) — erpy, (f5, ., ). Therefore,
as the second main component of our active learning strategy, we take a tiered approach to learning,
effectively shifting the distribution P to favor points in cells with average 7(-; Pxy ) value further
from 1/2. We achieve this by discarding a point X; if the number of queries exhausted toward de-
termining the majority label in its cell of the partition becomes excessively large, and we gradually
decrease this threshold as the data set grows, so that the points making it through this filter have
progressively less and less noisy labels. By choosing h to agree with the inferred f;;XY classifi-
cation of every point passing this filter, and combining this with the standard analysis of learning
in the realizable case (Vapnik, 1982, 1998; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989),
this allows us to provide a bound on the fraction of points in X" at a given level of noisiness (i.e.,
In(; Pxy) — 1/2|) on which the produced classifier / disagrees with [P+ such that this bound
decreases as the noisiness decreases (i.e., as |7(-; Pxy ) — 1/2| increases). Furthermore, by discard-
ing many of the points in high-noise regions without exhausting too many label requests trying to
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determine their 5 classifications, we are able to reduce the total number of label requests needed
to obtain € excess error rate.

Already these two components comprise the essential strategy that achieves these upper bounds
in the case of s = co. However, to obtain the stated dependence on s in these bounds when s < oo,
we need to introduce a third component: namely, using the inferred values of f;gxy(Xl-) in the
context of an active learning algorithm for the realizable case. For this, we specifically use the
disagreement-based strategy of Cohn, Atlas, and Ladner (1994) (known as CAL), which processes
the unlabeled data in sequence, and requests to observe the classification f;XY (X;) if and only if X;
is in the region of disagreement of the set of classifiers in C consistent with all previously-observed
TPy (X)) values. Using a modification of a recent analysis of this algorithm by Wiener, Hanneke,
and El-Yaniv (2014) (applied to each tier of label-noise separately), combined with the results below
(in Section 7.3) relating the complexity measure used in that analysis to the star number, we obtain
the dependence on s stated in the above results.

6. Comparison to Passive Learning

The natural baseline for comparison in active learning is the passive learning protocol, in which
the labeled data are i.i.d. samples with common distribution Pxy-: that is, the input to the passive
learning algorithm is (X1,Y7),..., (X, Ys). In this context, the minimax sample complexity of
passive learning, denoted Mp (e, 0), is defined as the smallest n € N U {0} for which there exists a
passive learning rule mapping (X1, Y1), ..., (X,,Y,) to a classifier h : X — Y such that, for any
Pxy € D, with probability at least 1 — 8, erp,,, (h) — infrec erpy, (h) < e.

Clearly Ap(e,d) < Mp(e, d) for any D, since for every passive learning algorithm A, there is
an active learning algorithm that requests Y7, ..., Y,, and then runs A with (X1,Y7),..., (Xn, Y5)
to determine the returned classifier. One of the main interests in the theory of active learning is
determining the size of the gap between these two complexities, for various sets ID. For the purpose
of this comparison, we now review several results known to hold for Mp(g, §), for various sets D.
Specifically, the following bounds are known to hold for any choice of hypothesis class C, and for
B, a, a, v, g, and ¢ as in the respective theorems from Section 5 (Vapnik and Chervonenkis, 1971;
Vapnik, 1982, 1998; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989; Ehrenfeucht, Haussler,
Kearns, and Valiant, 1989; Haussler, Littlestone, and Warmuth, 1994; Massart and Nédélec, 2006;
Hanneke, 2014).

o L(d+Log(})) S Mgg(d) St (dLog (@) + Log (%))
. ﬁ (d+ Log (5)) < Mpnp(e:0) S m (dLog (#) + Log (%))
o =% (A4 Log (5)) S Mr(e)(©:9) < Mpoaa S 4 (dLog (g=) + Log (5))-

. VTJS‘E (d + Log (%)) < MBE(V)(a, 5) < MA(;(V)(E, 9) < ”E—‘E‘E (dLog <%+€> + Log (%))

Let us compare these to the results for active learning in Section 5 on a case-by-case basis. In the
realizable case, we observe clear improvements of active learning over passive learning in the case
5K g (aside from logarithmic factors). In particular, based on the upper and lower bounds for both
passive and active learning, we may conclude that s < oo is necessary and sufficient for the asymp-
totic dependence on ¢ to satisfy Arg(e, ) = o(MRgE(e, -)); specifically, when s < oo, Arg(e, ) =
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O(Log(Mpgg(e,+))), and when s = oo, Arg(e, -) = O(MRpgg(e, -)). For bounded noise, we have a
similar asymptotic behavior. When s < oo, again Agy(g) (¢, ) = O(polylog(Mpng) (€, -))), and
when 5 = 0o, Agn(g)(€,) = (:)(MBN(ﬁ) (€,)). In terms of the constants, to obtain improvements
over passive learning (aside from the effects of logarithmic factors), it suffices to have s < @,
which is somewhat smaller (depending on /) than was sufficient in the realizable case.

Under Tsybakov’s noise condition, every o € (0,1/2] shows an improvement in the upper
bounds for active learning over the lower bound for passive learning by a factor of roughly — (aside
from logarithmic factors). On the other hand, when o € (1/2,1), if s < p} /a , the improvement

of active upper bounds over the passive lower bound is by a factor of roughly asa (f)m_l, while
1

fors > #‘l%, the improvement is by a factor of roughly —— - (again, ignoring logarithmic
a —Q

factors in both cases). In particular, for any o € (0,1), when s a< 00, the asymptotic dependence on
e satisfies Arn(a,)(€,7) = © (5 MrN(a,0) (€, -)), and when s = oo, the asymptotic dependence
on ¢ satisfies Arn(q,0)(€, ) = S (Emm{o‘ 1= O‘}MTN(a ) (& )) In either case, we have that for any

a € (0,1), Arn(a,a) (&) = o(MrN(a,a) (& -

For the Bernstein class condition, the gaps in the upper and lower bounds of Theorem 6 render
unclear the necessary and sufficient conditions for Apc(q,a)(€;°) = 0(Mpc(q,a)(€,-)). Certainly
5 < oo is a sufficient condition for this, in which case the improvements are by a factor of roughly
aga. However, in the case of s = oo, the upper bounds do not reveal any improvements over those
given above for Mpc(q,q)(€,9). Indeed, the example given above in Section 5 reveals that, in some
nontrivial cases, Agc(a,a)(€,0) 2 MBc(aa)(€,0)/Log(1/¢), in which case any improvements
would be, at best, in the constant and logarithmic factors. Note that this example also presents
an interesting contrast between active and passive learning, since it indicates that in some cases
ABc(a,)(€,0) and Apn(q,a) (€, 0) are quite different, while the above bounds for passive learning
reveal that Mpc(q,q)(€,0) is equivalent to My (,,4) (€, §) up to constant and logarithmic factors.

In the case of benign noise, comparing the above bounds for passive learning to Theorem 7,
we see that (aside from logarithmic factors) the upper bound for active learning improves over the
lower bound for passive learning by a factor of roughly L when v > (/. When v < /e, if
s > 4, the improvements are by a factor of roughly % +5 and ifs < g, the improvements are by

roughly a factor of min {%, (V:;i.)

known for this noise model for some time (Kédridinen, 2006), there are no gains in terms of the
asymptotic dependence on ¢ for fixed v. However, if we consider v, such thate < v, = o(1), then
for s < oo we have Apg(,,)(¢, ) = O(VMpg@,)(¢,°)), and for s = co we have Agg(,,)(¢,") =

O (max{va o }MBE vo) (&, ))

Finally, in the case of agnostic noise, similarly to the Bernstein class condition, the gaps between
the upper and lower bounds in Theorem 8 render unclear precisely what types of improvements we
can expect when s > + _, ranging from the lower bound, which has the behavior described above
for Agg(,), to the upper bound, which reflects no improvements over passive learning in this case.
When s < V%FE, the upper bound for active learning reflects an improvement over the lower bound

} (again, ignoring logarithmic factors). However, as has been

for passive learning by roughly a factor of ﬁ (aside from logarithmic factors). It remains an
interesting open problem to determine whether the stronger improvements observed for benign noise

generally also hold for agnostic noise.
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Technique ‘ Source ‘ Relation to s ‘
disagreement coefficient (Hanneke, 2007b) 31113p Op(e) =s A é

splitting index (Dasgupta, 2005) shulg) ;g% [mJ =5A EJ
teaching dimension (Hanneke, 2007a) " XTD(C,m) =5 Am
version space compression | (El-Yaniv and Wiener, 2010) ri?eaé( unel?v)fn np(U) =s Am
doubling dimension (Li and Long, 2007) sup Dy, p(e) €[1,0(d)] log(s A 1)

Table 1: Many of the complexity measures from the literature are related to the star number.

A remark on logarithmic factors: It is known that the terms of the form “dLog(x)” in each of
the above upper bounds for passive learning can be refined to replace x with the maximum of the
disagreement coefficient (see Section 7.1 below) over the distributions in ID (Giné and Koltchinskii,
2006; Hanneke and Yang, 2012; Hanneke, 2014). Therefore, based on the results in Section 7.1
relating the disagreement coefficient to the star number, we can replace these “dLog(x)” terms with
“dLog(sAz)”. In the case of BN(3), Massart and Nédélec (2006) and Raginsky and Rakhlin (2011)
have argued that, at least in some cases, this logarithmic factor can also be included in the lower
bounds. It is presently not known whether this is the case for the other noise models studied here.

7. Connections to the Prior Literature on Active Learning

As mentioned, there is already a substantial literature bounding the label complexities of various
active learning algorithms under various noise models. It is natural to ask how the results in the prior
literature compare to those stated above. However, as most of the prior results are Pxy-dependent,
the appropriate comparison is to the worst-case values of those results: that is, maximizing the
bounds over Pxy in the respective noise model. This section makes this comparison. In particular,
we will see that the label complexity upper bounds above for RE, BN(3), TN(a, «), and BE(v) all
show some improvements over the known results, with the last two of these showing the strongest
improvements.

The general results in the prior literature each express their label complexity bounds in terms
of some kind of complexity measure. There are now several such complexity measures in use,
each appropriate for studying some family of active learning algorithms under certain noise models.
Most of these quantities are dependent on the distribution Pxy or the data, and their definitions
are quite diverse. For some pairs of them, there are known inequalities loosely relating them, while
other pairs have defied attempts to formally relate the quantities. The dependence on Pxy in the
general results in the prior literature is typically isolated to the various complexity measures they
are expressed in terms of. Thus, the natural first step is to characterize the worst-case values of these
complexity measures, for any given hypothesis class C. Plugging these worst-case values into the
original bounds then allows us to compare to the results stated above.

In the process of studying the worst-case behaviors of these complexity measures, we also
identify a very interesting fact that has heretofore gone unnoticed: namely, that almost all of the
complexity measures in the relevant prior literature on the label complexity of active learning are in
fact equal to the star number when maximized over the choice of distribution or data set. In some
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sense, this fact is quite surprising, as this seemingly-eclectic collection of complexity measures
includes disparate definitions and interpretations, corresponding to entirely distinct approaches to
the analysis of the respective algorithms these quantities are used to bound the label complexities
of. Thus, this equivalence is interesting in its own right; additionally, it plays an important role in
our proofs of the main results above, since it allows us to build on these diverse techniques from the
prior literature when establishing these results.

Each subsection below is devoted to a particular complexity measure from the prior literature on
active learning, each representing an established technique for obtaining label complexity bounds.
Together, they represent a summary of the best-known general results from the prior literature rele-
vant to our present discussion. In each case, we show the equivalence of the worst-case value of the
complexity measure to the star number, and then combine this fact with the known results to obtain
the corresponding bounds on the minimax label complexities implicit in the prior literature. In each
case, we then compare this result to those obtained above.

We additionally study the doubling dimension, a quantity which has been used to bound the
sample complexity of passive learning, and can be used to provide a loose bound on the label
complexity of certain active learning algorithms. Below we argue that, when maximized over the
choice of distribution, the doubling dimension can be upper and lower bounded in terms of the star
number. One immediate implication of these bounds is that the doubling dimension is bounded if
and only if the star number is finite.

Our findings on the relations of these various complexity measures to the star number are sum-
marized in Table 1.

7.1 The Disagreement Coefficient
We begin with, what is perhaps the most well-studied complexity measure in the active learning
literature: the disagreement coefficient (Hanneke, 2007b, 2009b).

Definition 9 For any rq > 0, any classifier h, and any probability measure P over X, the disagree-
ment coefficient of h with respect to C under P is defined as

Qh,P(TO> = sup P (DIS (BP (h7 T)))

r>70 r

V1.

Also, for any probability measure Pxy over X x ), letting ‘P denote the marginal distribution
of Pxy over X, and letting hi, = denote a classifier with erpy, (hp, ) = infrec erpy, (h) and
infrec Pz : W(z) # hp,  (2) = 0,° define the disagreement coefficient of the class C with
respect to Pxy as Op,, (19) = eh;’gxy”p(ro).

The disagreement coefficient is used to bound the label complexities of a family of active learn-
ing algorithms, described as disagreement-based. This line of work was initiated by Cohn, Atlas,
and Ladner (1994), who propose an algorithm effective in the realizable case. That method was
extended to be robust to label noise by Balcan, Beygelzimer, and Langford (2006, 2009), which
then inspired a slew of papers studying variants of this idea; the interested reader is referred to Han-
neke (2014) for a thorough survey of this literature. The general-case label complexity analysis of
disagreement-based active learning (in terms of the disagreement coefficient) was initiated in the

9. See Hanneke (2012) for a proof that such a classifier always exists (though not necessarily in C).
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work of Hanneke (2007b, 2009b), and followed up by many papers since then (e.g., Dasgupta, Hsu,
and Monteleoni, 2007; Hanneke, 2009a, 2011, 2012; Koltchinskii, 2010; Hanneke and Yang, 2012),
as well as many works characterizing the value of the disagreement coefficient under various con-
ditions (e.g., Hanneke, 2007b; Friedman, 2009; Balcan, Hanneke, and Vaughan, 2010; Wang, 2011;
Balcan and Long, 2013; Hanneke, 2014); again, see Hanneke (2014) for a thorough survey of the
known results on the disagreement coefficient.

To study the worst-case values of the label complexity bounds expressed in terms of the dis-
agreement coefficient, let us define

5(5) = sup fp,, ().

Pxy

In fact, a result of Hanneke (2014, Theorem 7.4) implies that 0 (€) = supp supyec Onp(€), so that
this would be an equivalent way to define é(e), which can sometimes be simpler to work with. We
can now express the bounds on the minimax label complexity implied by the best general results to
date in the prior literature on disagreement-based active learning (namely, the results of Hanneke,
2011; Dasgupta, Hsu, and Monteleoni, 2007; Koltchinskii, 2010; Hanneke and Yang, 2012; Han-
neke, 2014), summarized as follows (see the survey of Hanneke, 2014, for detailed descriptions of
the best-known logarithmic factors in these results).

e Arg(e,8) S 6(c)d - polylog (%)

® Apng)(€,0) < = é(a/(l —28))d - polylog ().

5
b ATN(aa &, 5 5(12 (%)2 20‘ d polylog (%)
o Apc(an)(e,0) S a? (%) *)d - polylog ()
o App)(e,0) S (% + 1) 5<v+e>d-polylog (%)-

® Maw(6,0) S (& + 1> O(v + €)d - polylog ().

In particular, these bounds on Arn(q,a)(€;6), ABC(a,0)(€59), ABE@)(E,0), and Apxg()(g,9)
are the best general-case bounds on the label complexity of active learning in the prior literature
(up to logarithmic factors), so that any improvements over these should be considered an interesting
advance in our understanding of the capabilities of active learning methods. To compare these
results to those stated in Section 5, we need to relate 9( ) to the star number. Interestingly, we find
that these quantities are equal (for e = 0). Specifically, the following result describes the relation
between these two quantities; its proof is included in Appendix C.1. This connection also plays a
role in the proofs of some of our results from Section 5.

Theorem 10 Ve € (0, 1], 5(5) =sALand 5(0) =s.

With this result in hand, we immediately observe that several of the upper bounds from Section 5
offer refinements over those stated in terms of é() above. For simplicity, we do not discuss differ-
ences in the logarithmic factors here. Specifically, the upper bound on Arg(e,d) in Theorem 3
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refines that stated here by replacing the factor 0 (¢)d = min {5d, g} with the sometimes-smaller
factor min {5, g} Likewise, the upper bound on Apyg) (e,9) in Theorem 4 refines the result stated

here, again by replacing the factor é(s /(1—2p))d = min {5d, (1=28)d } with the sometimes-smaller

1>
(1-28)d
1>

factor min {5, } On the other hand, Theorem 5 offers a much stronger refinement over the

result stated above. Specifically, in the case < 1/2, the upper bound in Theorem 5 completely

eliminates the factor of é(aao‘) from the upper bound on Ary(,,q)(€, 0) stated here (i.e., replacing

it with a universal constant). For the case a > 1/2, the upper bound on ATN(a,a) (¢,9) in Theo-
2a—1

L=} with the factor min {5, 71, which

) qe™

rem 5 replaces this factor of é(asa) = min {s Tz
is always smaller (for small € and large d). The upper bounds on Apc(a,q)(€,9) and Axg(,)(€,9)
in Theorems 6 and 8 are equivalent to those stated here; indeed, this is precisely how these results
are obtained in Appendix B. We have conjectured above that at least the dependence on d and s
can be refined, analogous to the refinements for the realizable case and bounded noise noted above.

However, we do obtain refinements for the bound on Apg,) (e,9) in Theorem 7, replacing the

factor of (’E’—z + 1) O(v+e)d = (’;—; + 1) min {5d, Viﬁ} in the upper bound here with a factor

Z—;d + min {s, 2}, which is sometimes significantly smaller (for ¢ < v < 1 and large d).

7.2 The Splitting Index

Another, very different, approach to the design and analysis of active learning algorithms was pro-
posed by Dasgupta (2005): namely, the splitting approach. In particular, this technique has the
desirable property that it yields distribution-dependent label complexity bounds for the realizable
case which, even when the marginal distribution P is held fixed, (almost) imply near-minimax per-
formance. The intuition behind this technique is that the objective in the realizable case (achieving
error rate at most ¢) is typically well-approximated by the related objective of reducing the diam-
eter of the version space (set of classifiers consistent with the observed labels) to size at most €.
From this perspective, at any given time, the impediments to achieving this objective are clearly
identifiable: pairs of classifiers {h, ¢} in C consistent with all labels observed thus far, yet with
P(x : h(x) # g(x)) > e. Supposing we have only a finite number of such classifiers (which can
be obtained if we first replace C by a fine-grained finite cover of C), we can then estimate the use-
fulness of a given point X; by the number of these pairs it would be guaranteed to eliminate if we
were to request its label (supposing the worse of the two possible labels); by “eliminate,” we mean
that at least one of the two classifiers will be inconsistent with the observed label. If we always
request labels of points guaranteed to eliminate a large fraction of the surviving e-separated pairs,
we will quickly arrive at a version space of diameter €, and can then return any surviving classifier.
Dasgupta (2005) further applies this strategy in tiers, first eliminating at least one classifier from
every %—separated pair, then repeating this for the remaining %—separated pairs, and so on. This
allows the label complexity to be localized, in the sense that the surviving A-separated pairs we
need to eliminate will be composed of classifiers within distance 2A of f7*>XY (or the representative
thereof in the initial finite cover of C). The analysis of this method naturally leads to the following
definition from Dasgupta (2005).
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For any finite set Q C {{h, g} : h, g € C} of unordered pairs of classifiers in C, for any =z € X
andy € V,let Q% = {{h,g} € Q : h(xz) = g(x) = y}, and define

Split(Q, z) = |Q[ — max [QY].
yey

This represents the number of pairs guaranteed to be eliminated (as described above) by requesting
the label at a point z. The splitting index is then defined as follows.

Definition 11 For any p, A,7 € [0,1], a set H C C is said to be (p, A, 7)-splittable under a
probability measure P over X if, for all finite Q C {{h,g} CH : P(zx: h(z) # g(z)) > A},

P(x : Split(Q, ) = p|Q|) = 7.

For any classifier h : X — ), any probability measure P over X, and any ¢, T € |0, 1], the splitting
index is defined as

prp(e;m) =sup{p € [0,1] : VA > &,Bp(h,4A) is (p, A, 7)-splittable under P} .

Dasgupta (2005) proves a bound on the label complexity of a general active learning algorithm
based on the above strategy, in the realizable case, expressed in terms of the splitting index. Specif-
ically, for any 7 > 0, letting p = p f;’xy’P(e /4;7), Dasgupta (2005) finds that for that algorithm
to achieve error rate at most € with probability at least 1 — 9, it suffices to use a number of label

requests
d d
—polylog <> . (1
) edTp

The 7 argument to pp, p(e; 7) captures the trade-off between the number of label requests and
the number of unlabeled samples available, with smaller 7 corresponding to the scenario where
more unlabeled data are available, and a larger value of pj, p(e; 7). Specifically, Dasgupta (2005)

argues that O (Tip) unlabeled samples suffice to achieve the above result. In our present model,

we suppose an abundance of unlabeled data, and as such, we are interested in the behavior for very
small 7. However, note that the logarithmic factors in the above bound have an inverse dependence
on 7, so that taking 7 too small can potentially increase the value of the bound. It is not presently
known whether or not this is necessary (though intuitively it seems not to be). However, for the
purpose of comparison to our results in Section 5, we will ignore this logarithmic dependence on
1/7, and focus on the leading factor. In this case, we are interested in the value }g% php(&;T).

Additionally, to convert (1) into a distribution-free bound for the purpose of comparison to the
results in Section 5, we should minimize this value over the choice of P and h € C. Formally, we
are interested in the following quantity, defined for any € € [0, 1].

o(¢) = inf inf li $T).

ple) = inf inf lim pp, p(e;7)

In particular, in terms of this quantity, the maximum possible value of the bound (1) for a given
hypothesis class C is at least

d olylo 4
pe/nT e es)

To compare this to the upper bound in Theorem 3, we need to relate % to the star number. Again,
we find that these quantities are essentially equal (as ¢ — 0), as stated in the following theorem.
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Theorem 12 Ve € (0,1], [%J =sA L]

The proof of this result is included in Appendix C.2. We note that the inequalities s A EJ <
L%J < L%J were already implicit in the original work of Dasgupta (2005, Corollary 3 and Lemma

1). For completeness (and to make the connection explicit), we include these arguments in the proof

given in Appendix C.2, along with our proof that LLJ < s (which was heretofore unknown).

p(e)
Plugging this into the above bound, we see that the maximum possible value of the bound (1)

for a given hypothesis class C is at least

d
min {5d, } polylog <d> .
€ €d

Note that the upper bound in Theorem 3 refines this by reducing the first term in the “min” from sd
to simply s.

Dasgupta (2005) also argues for a kind of lower bound in terms of the splitting index, which was
reformulated as a lower bound on the minimax label complexity (for a fixed P) in the realizable case
by Balcan and Hanneke (2012); Hanneke (2014). In our present distribution-free style of analysis,
the implication of that result is the following lower bound.

1

ARE(S, 5) Z (48) .

s

Based on Theorem 12, we see that the min {5, %} term in the lower bound of Theorem 3 follows
immediately from this lower bound. For completeness, in Appendix B, we directly prove this term
in the lower bound, based on a more-direct argument than that used to establish the above lower
bound. We note, however, that Dasgupta (2005, Corollary 3) also describes a technique for obtaining
lower bounds, which is essentially equivalent to that used in Appendix B to obtain this term (and
furthermore, makes use of a distribution-dependent version of the “star” idea).

The upper bounds of Dasgupta (2005) have also been extended to the bounded noise setting. In
particular, Balcan and Hanneke (2012) and Hanneke (2014) have proposed variants of the splitting
approach, which are robust to bounded noise. They have additionally bounded the label complex-
ities of these methods in terms of the splitting index. Similarly to the above discussion of the
realizable case, the worst-case values of these bounds for any given hypothesis class C are larger
than those stated in Theorem 4 by factors related to the VC dimension (logarithmic factors aside).
We refer the interested readers to these sources for the details of those bounds.

7.3 The Teaching Dimension

Another quantity that has been used to bound the label complexity of certain active learning methods
is the extended teaching dimension growth function. This quantity was introduced by Hanneke
(2007a), inspired by analogous notions used to tightly-characterize the query complexity of Exact
learning with membership queries (Hegediis, 1995; Hellerstein, Pillaipakkamnatt, Raghavan, and
Wilkins, 1996). The term teaching dimension takes its name from the literature on Exact teaching
(Goldman and Kearns, 1995), where the teaching dimension characterizes the minimum number of
well-chosen labeled data points sufficient to guarantee that the only classifier in C consistent with
these labels is the target function. Hegediis (1995) extends this to target functions not contained in
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C, in which case the objective is simply to leave at most one consistent classifier in C; he refers to
the minimum number of points sufficient to achieve this as the extended teaching dimension, and
argues that this quantity can be used to characterize the minimum number of membership queries by
a learning algorithm sufficient to guarantee that the only classifier in C consistent with the returned
labels is the target function (which is the objective in the Exact learning model).

Hanneke (2007a) transfers this strategy to the statistical setting studied here (where the objective
is only to obtain excess error rate £ with probability 1 — ¢, rather than exactly identifying a target
function). That work introduces empirical versions of the teaching dimension and extended teaching
dimension, and defines distribution-dependent bounds on these quantities. It then proves upper and
lower bounds on the label complexity in terms of these quantities. For our present purposes, we
will be most-interested in a particular distribution-free upper bound on these quantities, called the
extended teaching dimension growth function, also introduced by Hanneke (2006, 2007a). Since
both this quantity and the star number are distribution-free, they can be directly compared.

We introduce these quantities formally as follows. For any m € NU {0} and S € &A™, and
forany h : X — Y, define the version space Vs, = {g € C : Vz € S, g(z) = h(x)} (Mitchell,
1977). For any m € N and U € X™, let C[U{] denote an arbitrary subset of classifiers in C such
that, Vh € C, |C[UU] NV 5| = 1: that is, C[U/] contains exactly one classifier from each equivalence
class in C induced by the classifications of /. For any classifier h : X — ), define

TD(h,ClU],U) = min{t € NU {0} : IS € U' s.t. |Vs, NCIU]| < 1},

the empirical teaching dimension of h on U with respect to Cl{]. Any S € |J,U" with [Vsp, N
C[U]| < 1is called a specifying set for h on U with respect to C[U/]; thus, TD(h, C[U/],U) is the size
of a minimal specifying set for h on U with respect to C[i{]. Equivalently, S € | J, U" is a specifying
set for h on U with respect to C[i/] if and only if DIS(Vs ;) NU = (. Also define TD(h,C,m) =

nax TD(h,ClU],U), TD(C,m) = max TD(h, C,m) (the teaching dimension growth function),
exm €
and XTD(C,m) = jmax TD(h, C,m) (the extended teaching dimension growth function).

A=

Hanneke (2007a) proves two upper bounds on the label complexity of active learning relevant
to our present discussion. They are summarized as follows (see the original source for the precise
logarithmic factors).!”

e Arg(s,0) S XTD (C, E]) d - polylog (%)

® Mg (€,0) S (Z—; + 1) XTD (C, L%FE—D d - polylog ({%).

Since BE(v) € AG(v), we have the further implication that

v? 1 d
< | — - . -
Apg)(g,0) < <€2 + 1) XTD <(C, ’7V+€—‘> d - polylog <55> .

Additionally, by a refined argument of Hegediis (1995), the ideas of Hanneke (2007a) can be applied
(see Hanneke, 2006, 2009b) to show that

XTD(C, [d/e]) d
Ane(:0) S 10 ReTD(C, [d/eT)) POV IO8 <5> |

10. Here we have simplified the arguments m to the XTD(C, m) instances compared to those of Hanneke (2007a), using
monotonicity of m +— XTD(C, m), combined with the basic observation that XTD(C, mk) < XTD(C, m)k for
any integer k > 1.
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To compare these bounds to the results stated in Section 5, we will need to relate the quantity
XTD(C,m) to the star number. Although it may not be obvious from a superficial reading of the
definitions, we find that these quantities are exactly equal (as m — o0). Thus, the extended teaching
dimension growth function is simply an alternative way of referring to the star number (and vice
versa), as they define the same quantity.!! This equivalence is stated formally in the following
theorem, the proof of which is included in Appendix C.3.

Theorem 13 Vm € N, XTD(C,m) = TD(C,m) = min{s, m}.

We note that the inequalities min{s, m} < TD(C, m) < XTD(C, m) < m follow readily from
previously-established facts about the teaching dimension. For instance, Fan (2012) notes that the
teaching dimension of any class is at least the maximum degree of its one-inclusion graph; applying
this fact to C[/] and maximizing over the choice of &/ € X', this maximum degree becomes
min{s, m} (by definition of 5). However, the inequality XTD(C, m) < s and the resulting fact that
XTD(C,m) = TD(C, m) are apparently new.

In fact, in the process of proving this theorem, we establish another remarkable fact: that every
minimal specifying set is a star set. This is stated formally in the following lemma, the proof of
which is also included in Appendix C.3.

Lemma 14 Forany h : X — Y, m € N, and U € X™, every minimal specifying set for h on U
with respect to C[U] is a star set for C U {h} centered at h.

Using Theorem 13, we can now compare the results above to those in Section 5. For simplicity,
we will not discuss the differences in logarithmic factors here. Specifically, Theorem 3 refines

the results here on Arg(e, d), replacing a factor of min {XTD((C, [1/e])d, %} ~
min {5d, g, 10“;“(55) , %} implied by the above results with a factor of min {5, g, 1026(15) } thus
reducing the first term in the “min” by a factor of d (though see below, as Wiener, Hanneke, and El-
Yaniv, 2014, have already shown this to be possible, directly in terms of XTD(C, m)). Theorem 13
further reveals that the above bound on Axg(,)(€,d) is equivalent (up to logarithmic factors) to
that stated in Theorem 8. However, the bound on Aggy,) (€,9) in Theorem 7 refines that implied

above, replacing a factor <l§ + 1) XTD ((C, L}FE—D d = (;’—; + 1) min {5d, uia} with a factor

Z—;d + min {s, ¢}, which can be significantly smaller for ¢ < v < 1 and large d.

Hanneke (2006, 2007a) also proves a lower bound on the label complexity of active learning in
the realizable case, based on the following modification of the extended teaching dimension. For
any set H C C, classifierh : X — Y, m € NJU € X, and § € |0, 1], define the partial teaching
dimension as

XPTD(h, HU],U, ) = min{t € NU {0} : IS € U" s.t. |Vs NH[U]| < S|HU]| + 1},
and let XPTD(H,m,d) = max max XPTD(h, H[U]|,U, ). Hanneke (2006, 2007a) proves

hX—YUeX™
that

1—¢
> _ .
Arg(g,0) > %E%XPTD <7—[, [ E —‘ ,5)

The following result relates this quantity to the star number.

11. In this sense, the star number is not really a new quantity to the active learning literature, but rather a simplified
definition for the already-familiar extended teaching dimension growth function.
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Theorem 15 Vm € N, Vo € [0,1/2],

[(1 = 26) min{s, m}] < ax XPTD(H, m,8) < {(1 _ 1j5> min{s,m}-‘ .

The proof is in Appendix C.3. Note that, combined with the lower bound of Hanneke (2006,
2007a), this immediately implies the part of the lower bound in Theorem 3 involving s. In Ap-
pendix B, we provide a direct proof for this term in the lower bound, based on an argument similar
to that of Hanneke (2007a).

7.3.1 THE VERSION SPACE COMPRESSION SET SIZE

More-recently, El-Yaniv and Wiener (2010, 2012); Wiener, Hanneke, and El-Yaniv (2014) have
studied a quantity 7, (U) (for a sequence U € |J,, X" and classifier h), termed the minimal version
space compression set size, defined as the size of the smallest subsequence S C U for which
Van = Vigp12

It is easy to see that, when h € C, the version space compression set size is equivalent to the
empirical teaching dimension: that is, Vh € C,

fn(U) = TD(h, ClU],U).

To see this, note that since |V, 5, N ClUf]| = 1, any S C U with Vg, = V4, has |Vg ), NClU]| = 1,
and hence is a specifying set for & on U with respect to C[l{/]. On the other hand, for any S C U,
we (always) have Vg, O Vi 4, so that if |V, N C[U]| < 1, then Vg, N ClU] D Vi, N ClU] and
Vs nNCU]| > |Viy hNCU]| = 1 > |V ,NCU]|, which together imply Vs , NC[U] = Vi, NCIU];
thus, Vg, € {g € C : Vo € U,g(z) = h(z)} = Viup C Vgp, so that Vg = Vit thatis, S
is a version space compression set. Thus, in the case h € C, any version space compression set .S
is a specifying set for h on U with respect to C[i/] and vice versa. That ny,(U) = TD(h, ClU],U)
Vh € C follows immediately from this equivalence.
In particular, combined with Theorem 13, this implies that Vm € N,

[Joax max np(U) = TD(C,m) = min{s, m}. ()

Letting 7,, = 1 ey ({X1,...,X.n}), Wiener, Hanneke, and El-Yaniv (2014) have shown that,

in the realizable case, for the CAL active learning algorithm (proposed by Cohn, Atlas, and Ladner,

1994) to achieve error rate at most € with probability at least 1 — ¢, it suffices to use a budget n of
any size at least

. 1
| polylog <56> )

where M. 5 < 1 (dLog (1) + Log (5)) is a bound on the sample complexity of passive learning

by returning an arbitrary classifier in the version space (Vapnik, 1982, 1998; Blumer, Ehrenfeucht,

Haussler, and Warmuth, 1989). They further provide a distribution-dependent bound (to remove the

dependence on the data here) based on confidence bounds on 7, (analogous to the aforementioned

distribution-dependent bounds on the empirical teaching dimension studied by Hanneke, 2007a).

12. The quantity studied there is defined slightly differently, but is easily seen to be equivalent to this definition.
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For our purposes (distribution-free, data-independent bounds), we can simply take the maximum
over possible data sets and possible f7*>XY functions, so that the above bound becomes

1
max max max np({z1,...,2m})polylog <5>
5

z1,22,...€X heC 1§T7’LSM575
1 d 1
=TD(C, M. s)polylog (| — ) STD(C, |—| ) polylog | — ] .
’ ed € ed

Combining this with (2), we find that the label complexity of CAL in the realizable case is at most

. d 1
min < s, — » polylog | — |,
€ )

which matches the upper bound on the minimax label complexity from Theorem 3 up to logarithmic
factors.

7.4 The Doubling Dimension

Another quantity of interest in the learning theory literature is the doubling dimension, also known
as the local metric entropy (LeCam, 1973; Yang and Barron, 1999; Gupta, Krauthgamer, and Lee,
2003; Bshouty, Li, and Long, 2009). Specifically, for any set H of classifiers, a set of classifiers G
is an e-cover of H (with respect to the P(DIS({-, -})) pseudometric) if

sup inf P(z : g(x) # h(z)) <e.
heH 9€9

Let N (g, H, P) denote the minimum cardinality |G| over all e-covers G of H, or else N (e, H, P) =
oo if no finite e-cover of H exists. The doubling dimension (at &) is defined as follows.

Definition 16 For any ¢ € (0, 1], any probability measure P over X, and any classifier h, define

Dy p(e) = rilzatg(logQ (N (r/2,Bp(h,r), P)).

The quantity D. = Dyx p(e) is known to be useful in bounding the sample complexity of

XY
passive learning. Specifically, Li and Long (2007); Bshouty, Li, and Long (2009) have shown that
there is a passive learning algorithm achieving sample complexity < Desa + % log (%) for Pxy €

RE. Furthermore, though we do not go into the details here, by a conibination of the ideas from
Dasgupta (2005), Balcan, Beygelzimer, and Langford (2009), and Hanneke (2007b), it is possible
to show that a certain active learning algorithm achieves a label complexity < 4P D, - polylog(%)
for Pxy € RE, though this is typically a very loose upper bound.

To our knowledge, the question of the worst-case value of the doubling dimension for a given
hypothesis class C has not previously been explored in the literature (though there is an obvious
O(dlog(1/¢)) upper bound). Here we obtain upper and lower bounds on this worst-case value,
expressed in terms of the star number. While this relation generally has a wide range (roughly a
factor of d), it does have the interesting implication that the doubling dimension is bounded if and
only if s < oo. Specifically, we have the following theorem, the proof of which is included in
Appendix C.4.
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Theorem 17 Ve € (0,1/4], max {d, Log (s A %)} < supsup Dy, p(e) < dLog (s A %)
P heC

One can show that the gap between the upper and lower bounds on sup p supy,cc Dy, p(€) in this
result cannot generally be improved by much without sacrificing generality or introducing additional
quantities. Specifically, for the class C discussed in Appendix D.2, we have supp sup,cc Dy, p(€)
< supplogy(N(e/2,C, P)) < max{d,Log (s A1)}, so that the lower bound above is some-
times tight to within a universal constant factor. For the class C discussed in Appendix D.1, based
on a result of Raginsky and Rakhlin (2011, Lemma 4), one can show supp sup,cc Dp p(e) 2
dLog (§ A %) so that the above upper bound is sometimes tight, aside from a small difference in
the logarithmic factor (dividing s by d).

Interestingly, in the process of proving the upper bound in Theorem 17, we also establish the
following inequality relating the doubling dimension and the disagreement coefficient, holding for

any classifier h, any probability measure P over X, and any € € (0, 1].
Dy, p(e) < 2dlog, (22¢°0, p(¢)) -

This inequality may be of independent interest, as it enables comparisons between results in the
literature expressed in terms of these quantities. For instance, it implies that in the realizable case,
the passive learning sample complexity bound of Bshouty, Li, and Long (2009) is no larger than
that of Giné and Koltchinskii (2006) (aside from constant factors).

8. Conclusions

In this work, we derived upper and lower bounds on the minimax label complexity of active learning
under several noise models. In most cases, these new bounds offer refinements over the best results
in the prior literature. Furthermore, in the case of Tsybakov noise, we discovered the heretofore-
unknown fact that the minimax label complexity of active learning with VC classes is always smaller
than that of passive learning. We expressed each of these bounds in terms of a simple combinatorial
complexity measure, termed the star number. We further found that almost all of the distribution-
dependent and sample-dependent complexity measures in the prior active learning literature are
exactly equal to the star number when maximized over the choice of distribution or data set.

The bounds derived here are all distribution-free, in the sense that they are expressed without
dependence or restrictions on the marginal distribution P over X'. They are also worst-case bounds,
in the sense that they express the maximum of the label complexity over the distributions in the noise
model D, rather than expressing a bound on the label complexity achieved by a given algorithm as
a function of Pxy. As observed by Dasgupta (2005), there are some cases in which smaller label
complexities can be achieved under restrictions on the marginal distribution P, and some cases
in which there are achievable label complexities which exhibit a range of values depending on
Pxv (see also Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2012, for further exploration of
this). Our results reveal that in some cases, such as Tsybakov noise with o < 1/2, these issues
might typically not be of much significance (aside from logarithmic factors). However, in other
cases, particularly when s = oo, the issue of expressing distribution-dependent bounds on the label
complexity is clearly an important one. In particular, the question of the minimax label complexity
of active learning under the restrictions of the above noise models that explicitly fix the marginal
distribution P remains an important and challenging open problem. In deriving such bounds, the
present work should be considered a kind of guide, in that we should restrict our focus to deriving
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distribution-dependent label complexity bounds with worst-case values that are never worse than
the distribution-free bounds proven here.

Appendix A. Preliminary Lemmas

Before presenting the proofs of the main results above, we begin by introducing some basic lemmas,
which will be useful in the main proofs below.

A.1 e-nets and e-covers

For a collection 7 of measurable subsets of X, a value € > 0, and a probability measure P on
X, wesay aset N C X is an e-net of P for 7 if N N A # () for every A € T with P(A) > ¢
(Haussler and Welzl, 1987). Also, a finite set H of classifiers is called an e-cover of C (under the
P(DIS({-,-})) pseudometric) if sup cc minpey P : h(z) # g(z)) < ¢

The following lemma bounds the probabilities and empirical probabilities of sets in a collection
in terms of each other. This result is based on the work of Vapnik and Chervonenkis (1974) (see also
Vapnik, 1982, Theorem A.3); this version is taken from Bousquet, Boucheron, and Lugosi (2004,
Theorem 7), in combination with the VC-Sauer Lemma (Vapnik and Chervonenkis, 1971; Sauer,
1972) and a union bound.

Lemma 18 For any collection T of measurable subsets of X, letting k denote the VC dimension of
T, for any 6 € (0,1), for any integer m > k, for any probability measure P over X, if X1,...,X,,
are independent P- distributed random variables, then with probability at least 1 — 9, it holds that
VA € T, letting P(A) = LS 1a(X)),

kLog (2ekm) + Log (
m

|00

)

P(A) < P(A) + 2\/7>(A)

|00

)

and P(A) < P(A) + 2\/75(A)kiL0g (2ekmm+ Log (

In particular, with a bit of algebra, this implies the following corollary.

Corollary 19 There exists a finite universal constant cq > 1 such that, for any collection T of
measurable subsets of X, letting k denote the VC dimension of T, for any €,§ € (0,1), for any
integer m > < (kLog (%) + Log (%)), for any probability measure P over X, if X{,...,X],
are independent P- distributed random variables, then with probability at least 1 — 6, it holds that
VA € T, letting P(A) = LS La(X)),

o P(A) <3 = P(A) <=
o P(A) <le = P(4) < ie

k:Log(

> )+Los(§)

Proof Let E(m) =4 , and note that for m > 2 (k:Log (é) + Log (%)),

3

g (m) < 42 HLog (52 (kLog (2) + Log (3))) + Log (3)
o KLog (£) + Log (3)
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If kLog ( ) > Log (%) then

o (2 (1) (1) 3
(1) (5 < (5) 3

1 1 1
< 21<:L0g<6) + kLog(4eco) + Log(8) + Log<5> < Log(32¢%cy) (l{:Log(é_) + L0g<5)>.
Otherwise, if kLog (%) < Log (%), then

1 8
) +1es(5))) <105 )

8 4ecy 1 1 8

) <« - i =
>>+Log<6>_k‘Log< 5 >+k‘L0g<kLog<5>>~l—Log<6>,

1Log (%)) is nondecreasing for > 0, and k < kLog (1) < Log (}), the

2600

kLog ( <kLog (
ke

< kLog <zcoLog (
(

and since z — xLog
above is at most

decy 1 8
. ) + Log 6) + Log <5>

< kLog(i) + kLog(4ecy) + Log(8) + 2Log<(1s> < Log(326200) <kLog<i> + Log(é)).

kLog <

In either case, we have that the right hand side of (3) is at most 2=Log (32¢®¢o). In particular, taking
co = 21 suffices to make %Log (326360) < 614, so that (3) implies €(m) < &.
Lemma 18 implies that with probability at least 1 — 9, every A € T has

P(A) < P(A) + /P(A)E(m)
P(A) < P(A) +\/P(A)E(m).

Solving these quadratic expressions in \/P(A) and 4/ 75(A), respectively, we have

and

P(A) < P(A) + 1\/8 2 4 48(m)P(A) @

and

P(A) < P(A) + )+ = Je 2+ 4E(m)P(A). o)

Therefore, if P(A) < 3¢, then (4) 1mphes
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and likewise, if P(A) < %5, then (5) implies

. 1
P(A) < get 5 8 )+ = \/8 24 28(m)e

< 1—|—i+1\/1+i e < 1—|— L +1 €<§s
- 128 2V 642 32 128 8 47
[ |

We will be interested in applying these results to the collection of sets {DIS({h, g}) : h,g € C}.
For this, the following lemma of Vidyasagar (2003, Theorem 4.5) will be useful.

Lemma 20 The VC dimension of the collection {DIS({h, g}) : h, g € C} is at most 10d.

Together, these results imply the following lemma (see also Vapnik and Chervonenkis, 1974;
Vapnik, 1982; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989; Haussler and Welzl, 1987).

Lemma 21 There exists a finite universal constant ¢ > 1 such that, for any €,6 € (0,1), for
any integer m > < (dLog (%) + Log (%)) for any probability measure P over X, if X{,...,X,,
are independent P-distributed random variables, then with probability at least 1 — 6, it holds that
Vh,g € C, if (9(X7),...,9(X],)) = (h(X]),...,h(X],)), then P(z : g(x) # h(z)) <e

In particular, this implies that with probability at least 1 — 6, letting C[(X1, ..., X],)] be as in
Section 7.3, C[(X1],...,X,,)] is an e-cover of C (under the P(DIS({-,-})) pseudometric), and
{X1,...,X],} is an e-net of P for {DIS({h, g}) : h,g € C}.

Proof Let ¢y be as in Corollary 19, and let k& denote the VC dimension of {DIS({h, g}) : h,g €
C}. Corollary 19 implies that, if m > < (kLog (1) + Log (3)), then there is an event E of
probability at least 1 — §, on which every h,g € C with 33" Ipigqn,gp(X() = 0 satisfy
P(DIS({h,g})) < &; in particular, this proves that on the event E, {X],..., X/, } is an e-net
of P for {DIS({h,g}) : h,g € C}. Furthermore, by definition of C[(X7,...,X] )], for every
h e C,3g € C[(X],...,X,,)] with 3" | TIpig(qh,g)) (X:) = 0, which (on the event E) therefore
also satisfies P(DIS({h,g})) < e. Thus, on the event E, C[(X],...,X],)] is an e-cover of C
(under the P(DIS({-,-})) pseudometric). To complete the proof, we note that Lemma 20 implies
k < 10d, so that by choosing ¢ = 10co, the condition m > < (k:Log( ) + Log( )) will be
satisfied for any m > £ (dLog (6) + Log ( )) |

Based on this result, it is straightforward to construct an e-net of P for {DIS({h, g}) : h,g € C}
of size < dLog ( ) based on a relatively small number of random samples. Specifically, we have
the followmg lemma.

Lemma 22 There exists a finite universal constant ¢ > 1 such that, for any probability measure P
on X, if X|, X}, ... are independent P-distributed random variables, then Ve, 6 € (0, 1), for any in-
tegers m > %Log (%) and { > % (dLog (%) + Log (%)) defining N; = {Xrln(i—l)—i-l’ LX)
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foreachi € {1,...,[logy(2/9)]}, letting

) m[logy(2/8)]+¢
1= argmin max Z ]]-DIS({h,g})(X],') :
i€{1,...,[log(2/5)1} j=m[logy(2/8)]+1
hag € (Cv Z ]lDIS({h,g}) (X]/) =0,
j=m(i—1)+1

and N = N, with probability at least 1 — 0, N is an -net of P for {DIS({h,g}) : h,g € C}.

Proof Let k denote the VC dimension of the collection of sets {DIS({h, g}) : h,g € C}. Letting
co be as in Corollary 19, taking ¢/ > 10cg, we have ¢ > < (10dLog (1) + Log (%)), which is at
least < (k:Log (%) + Log (%)) by Lemma 20. Therefore, Corollary 19 implies there exists an event
E’ of probability at least 1 — 6/2 such that, on E’, Vh, g € C,

m[logy(2/6)]+£

> oisugy(X)) < oot = PDIS({h,g}) <=, ©)
m[logy(2/8)]+1
- m[logy(2/8)]+¢ 3
P(DIS({h,g})) < 5 — Z ]lDIS({h,g})(X]/') < Z&‘f. @)
m[logy(2/6)]+1

Let c be as in Lemma 21. Taking ¢ > 6c, we have m > 2¢ (dLog (%) + Log (2)), so that
Lemma 21 implies that, for each i € {1,..., [logy(2/5)]}, N; is an §-net of P for {DIS({h, g}) :
h,g € C} with probability at least 1/2. Since the N; sets are independent, there is an event £ of
probability at least 1 — (1 — 1/2)1°g2(2/91 > 1 — §/2, on which 3i* € {1, ..., [logy(2/0)]} such

that N;« is an $-net of P for {DIS({h, g}) : h, g € C}. In particular, this implies that on £,

mi* c
sup P(DIS({hvg})) : h7g eC, Z :H-DIS({h,g}) (le) =0, < 5 (3
j=m(i*—1)+1
Therefore, on the event E' N E, we have
m[logy(2/9)]+£ mi
max > Ipis(irgy (X)) thg €C, > dpigngn (X)) =0
j=m[logy(2/8)]+1 j=m(i—1)+1
m[logy(2/6)]+¢ it ;
< max Z Ipis({hgp(X;) : h,g € C, Z Ipis({hgp(X;) =0 p < 155,
j=m[logy(2/8)]+1 j=m(i*—1)+1

where the first inequality is by definition of 7, and the second inequality is by a combination of (8)
with (7). Therefore, by (6), on the event £’ N E, we have

mi

max { POIS({hg})) :hg€C. Y Tprsipugy (X)) =0p <e,
j=m(i—1)+1
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or equivalently, IV; is an e-net of P for {DIS({h,g}) : h,g € C}. To complete the proof, we take
¢’ = max{10cy, 6¢}, and note that the event E’'N E has probability at least 1 —§ by a union bound. H

There are also variants of the above two lemmas applicable to sample compression schemes.
Specifically, the next lemma is due to Littlestone and Warmuth (1986); Floyd and Warmuth (1995).

Lemma 23 There exists a finite universal constant ¢ > 1 such that, for any collection T of mea-
surable subsets of X, any n € N U {0}, and any function ¢,, : X" — T, for any ,6 € (0, 1), for
any integer m > g (nLog (%) + Log (%)), for any probability measure P over X, if X{,...,X],
are independent P-distributed random variables, then with probability at least 1 — §, it holds that
every i, ... in € {1,...,m} withiy < -+ <ipand {X1,..., X, } N n(Xj,..., X] ) =10
has P (¢n(X£1, X! ) < e thatis, {X1,...,X],} is an e-net of P for {on(X],, -, X})
Ulyeenyln € {1,...,m},i1 <.- Sln}

This implies the following result.

Lemma 24 There exists a finite universal constant ¢ > 1 such that, for any collection T of mea-
surable subsets of X, any n € N, and any function ¢, : X" x Y" — T, for any probability
measure P on X, if X, X}, ... are independent P-distributed random variables, then for any
g, 6 € (0,1), for any integers m > %Log (%) and { > £ (nLog (%) + Log (%)) defining

€

N; = {X;n(ifl)er o Xt foreachi € {1, ..., [logy(2/0)1}, letting
m[logy(2/8)]+£
1 = ' argmin max Z ]lfbn(X{l7~~.,X{n,y17~-~,yn)(X§) Yty -5 Yn € ya
i€{l,...,[logy(2/0)1} j=m[log,(2/8)]+1
mi
m(l - 1) < Z.1 S tte S 1,n S m/i7 Z IL¢n(X£1a---vX{wyh---,yn)(XJ/') = O U {0}7
j=m(—1)+1

and N = N, with probability at least 1 — 9, N isan e-net of P for {én(Xi,, ..., X{ ,y1,-- ., ¥n)
m(i—1) <iy < <ip <mi,y1,...,yn € Y}

Proof Let ¢ be as in Lemma 23, define ¢d = max{8¢, 128}, and let m and ¢ be as described
in the lemma statement. Noting that 2 (nLog (2) + Log (2"™!)) < #%:Log (1), we have that
m > 2 (nLog (2) + Log (2"*!)). Thus, by Lemma 23, for each i € {1,...,[logy(2/6)]}
and y1,...,y, € ), with probability at least 1 — 27"~1, {X;n(ifl)ﬂ, . ,X{nl} is an $-net of
P for {¢pn(X] ..., X] ;1. yn) :m(i—1) < iy <--- < i, <mi}. By a union bound, this
holds simultaneously for all y;,...,y, € ) with probability at least % In particular, since the

{X - (—1)417 7X1Im} subsequences are independent over values of 4, we have that there is an
event E of probability at least 1 — () [log>(2/0)] >1— %, on which 3i* € {1, ..., [logy(2/6)]} such
that {X;n(i*_l)ﬂ, . ,X,’m*} is an §-net of P for {¢n(X{1, e XL YLy Yn) s m(iF 1) <y

<o <l <mAt Y, yn € V)
Forany i € {1,...,[logy(2/0)]}, any i1,...,i, € {m(i — 1)+ 1,...,mi} withi; <--- <
in, and any yi,...,yn, € Y, Chernoff bounds (applied under the conditional distribution given
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Xj,,...,X] )and the law of total probability imply that, with probability at least 1 —exp {—&//32},

217
if P (¢n(X) ..., X, sy, yn)) < 5. then
m[logy(2/8)]+¢

Z 1¢W(X{17»X:nvy17’yn)(X;) S 1567
j=ml[logy(2/6)]1+1

while if P (¢ (X/ ..., X} ,y1,...,yn)) > &, then

m[logy(2/8)]+£

3
2. L (X0, e Xl ) (X5) > 786
j=mllogy(2/8)]+1

The number of distinct nondecreasing sequences (i1, . .. ,i,) € {m(i—1)+1,...,mi}"is (”+:L”_1)
< (%Tm)n Therefore, by a union bound, there exists an event E’ of probability at least

_— (2;“) Nloga(2/6)] exp {—et/32}

on which this holds for every such y1, ..., yn,,11,...,%,. Noting that

32

g <2n Mlogy(2/5)] (227”)” ?) < % <nL0g (%) +Log (;)) <1

we have that £’ has probability at least 1 — g.
In particular, defining for each i € {1,..., [logy(2/9)]},

m[logy(2/6)]+¢
ﬁl = max Z :H-¢n(X;177X1,7L7y177y'ﬂ)(X.;) : yl’ U 7yn 6 y’
j=m/[logy(2/5)]+1
mi

m(Z - 1) <ap << <, Z ﬂqﬁn(X;l,...,X{n,yl,...,yn) (X]/) =0,U {0}7
j=m(i—1)+1

we have that, on E N E', p; < 3el. Furthermore, for every i € {1,..., [logy(2/5)]} for which
{X;n(ifl)ﬂ,...,X?’m} is not an e-net of P for {¢n(X!,,..., X g1, yn) : mli — 1) <
ip < oo <dp < mid,yi,...,yn € Y}, by definition Jiy, ..., i, € {m(i — 1) +1,...,mi}
with i3 < -+ < iy, and y1,...,y, € Y, such that P (qﬁn(X;l,...,X{n,yl,...,yn)) > ¢ while

mi " — - /
ijm(ifl)ﬂ ldm(X{l,...,Xgn,yl,...,yn)(Xj) = 0; thus, on the event E’,

m[logy(2/6)]+¢

3
Z ﬂ(z)n(X;l?7X{n7y177y")(X.;) > ZEE
j=mllogy(2/6)]+1

for this choice of 71, ...,%n,¥1,...,Yn. In particular, this implies that p; > %55. Altogether, we
have that on the event £ N E’, any such ¢ has P; < P < %56 < p;, so that i # 1. Therefore,
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on the event E N F’, {X;n(%_lHl,...,XT’n%} is an e-net of P for {(;Sn(XZfl,...,X{n,yl,...,yn) :

To complete the proof, we note that the event 2 N E’ has probability at least 1 — § by a union
bound. |

A.2 Lower Bound Constructions for Noisy Settings

Fix any ¢ € (0,1], 8 € [0,1/2), and k¥ € N with £ < 1/¢. Let Xy = {x1,...,Zrt1} be any
k + 1 distinct elements of X’ (assuming [X| > &k + 1), and let C, = {z — 21,1 (z) —1:i €
{1,...,k}}, a set of functions mapping X’ to {—1,+1}. Let P, ¢ be a probability measure over X’
with Py, - ({x;}) = (foreachi € {1,...,k},and Py ¢({xx41}) = 1 —(Ck. Foreacht € {1,...,k},
let P,; ¢+ denote the probability measure over X' x ) having marginal distribution P ¢ over X', such
thatif (X,Y) ~ Py ., theneveryi € {1,... , k}hasP(Y = 21, 1,(X)—1|X = ;) = 13, and

furthermore P(Y = —1|X = z,1) = 1. Finally, define RR/(k, (, 8) = {P,g ceited{l k:}}
Raginsky and Rakhlin (2011) prove the following result (see the proof of their Theorem 2).!3

Lemma 25 For (, 3, k as above, if k > 2 and Cy, C C, then for any 6 € (0,1/4),

n(L
Arr(r,c,8)((¢/2)(1 = 26),6) = m

This has the following immediate implication for general X and C. Fix any ¢ € (0,1] and 5 €
[0,1/2),1let k € NU {0} satisfy K < min{s — 1,[1/¢|}, and let x1, ...,z and ho, hy, ..., hg
be as in Definition 2. Let Py be as above (for this choice of z1,...,}41), and for each ¢ €
{1,...,k}, let P ¢, denote the probability measure over X x ) having marginal distribution Py, ¢
over X, such thatif (X,Y") ~ Py ¢ s, theneveryi € {1,... k}hasP(Y = h(X)| X = ;) = 1-5,
and furthermore P(Y = h¢(X)|X = x41) = 1. Define RR(k,(, 5) = {Prcs :t € {1,...,k}}.
We have the following result.

Lemma 26 For k,(, (3 as above, for any 6 € (0,1/4),

B(k—1)In (%)
3(1— 25)2 '

Proof First note that if & < 1, then the lemma trivially holds (since Agg( ¢ () > 0). For this
same reason, the result also trivially holds if 3 = 0. Otherwise, suppose & > 2 and S > 0, and fix
any n less than the right hand side of the above inequality. Let .4 be any active learning algorithm,
and consider the following modification A" of A. For any given sequence X1, X, ... of unlabeled
data, A’(n) simulates the execution of .A(n), except that when A(n) would request the label Y; of a
point X in the sequence, A’(n) requests the label Y;, but proceeds as A(n) would if the label value

ARR(k,c,5)((¢/2)(1 —28),0) >

13. Technically, the proof of Raginsky and Rakhlin (2011, Theorem 2) relies on a lemma (their Lemma 4), with various
conditions on both £ and a parameter “d” in their construction. However, one can easily verify that the conclusions
of that lemma continue to hold (in fact, with improved constants) in our special case (corresponding to d = 1 and
arbitrary k € N) by defining My,1 = {0, 1}} in their construction.
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had been —Y;ho(X;) instead of Y;. When the simulation of .A(n) concludes, if & is its return value,
A’(n) instead returns the function = — h/(z) = —h(z)ho(z).

Now fixa P ., € RR/(k, (, ) minimizing the probability that erpr (h')—infhec, erpr (h)
< (¢/2)(1-28) when A’ is run with Pxy = P| . ,, and let (X,Y) ~ PIQCt Note that the marginal
distribution of P . , over X' is Py ¢, that forany i € {1,..., k}, P(=Yho(X) = It(X)|X = z;) =
P(Y = 21,,3(X) — 1|X = 2;) = 1 — 3, and that P(=Y ho(X) = h(X)|X = 2p41) = P(Y =
—1|X = w441) = 1. In particular, this implies (X, =Y ho(X)) ~ Pj¢+. Therefore, running
the active learning algorithm A’(n) with a sequence (X1, Y1), (X2,Y2), ... of independent P . ;-
distributed samples, the algorithm behaves as A(n) would under Py ¢, except that its returned
classifier is i/ instead of h. Next, note that

erpr (W) = P(=h(X)ho(X) #Y)

= E[P(h(X) # =Y |X)1[ho(X) = 1] + P(h(X) # Y|X)1[ho(X) = —1]]
P(A(X) # ~Yho(X)) = erp ., (h),

and furthermore

hiengk erpzi,c,t(h) = erpé,<7t(2]l{xt} —1) = pCk =erp, ,(hy) = érelé erp, ., (h).

Thus, if erpk’g’t(ﬂ) — infpecerp, ., (h) < (¢/2)(1 — 28), then we must also have erp ; t(iL’) —

1
infpec, erpy ; () < (¢/2)(1 = 2B). Since n < ﬁfffggé)g , Lemma 25 implies that (for this choice

of P} ) A’(n) achieves the latter guarantee with probability strictly less than 1 — 4, and therefore
the corresponding Py ¢, € RR(k,(, 3) is such that A(n) has probability strictly less than 1 — §

of achieving erp, . ,(h) — infrecerp, ., (h) < (¢/2)(1 — 23). Since this argument applies to any
active learning algorithm 4, the result follows. |

A.3 Finite Approximation of VC Classes

For a given probability measure P over X', Adams and Nobel (2012) have proven that for any 7 > 0,
if d < oo, there exist disjoint measurable sets A, ..., Ay (for some k € N) with | J, A; = X such
that, Vh € C, P (U{A; : Fz,y € A; s.t. h(z) # h(y)}) < 7: thatis, every h € C is constant on
all of the sets A;, except a few of them whose total probability is at most 7. This property has
implications for bracketing behavior in VC classes, and was proven in the context of establishing
uniform laws of large numbers for VC classes under stationary ergodic processes (see also Adams
and Nobel, 2010; van Handel, 2013).

For our purposes, this result has the appealing feature that it allows one to effectively discretize
the space X’ by partitioning it into subsets, with the guarantee that with high probability over the
random choice of a point x, any other point y in the same cell in the partition as x will have
JPy (@) = [P, (y), forany Pxy € U,¢(9,1/2) BE(v). However, before we can make use of this
property, we must first address the fact that the construction of these sets A; by Adams and Nobel
(2012) requires a strong dependence on P, to the extent that it is not obvious that this dependence
can be supplanted by a data-dependent construction. However, it turns out that if we relax the
requirement that the classifiers be constant in these cells, instead settling for being nearly-constant,
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then it is straightforward to construct a partition Ay, . . . , Ay, satisfying the requirement. Specifically,
we have the following result.

Lemma 27 Fixany 7,6 € (0,1), andletm, 5 = (% (dLog(%) + Log(%))] (for cas in Lemma 21).
For any probability measure P over X, if X|,..., X{nT , are independent ‘P-distributed random
variables, then with probability at least 1 — 6, letting C.5 = C[(X{,..., X}, )] (as defined in

Section 7.3), the collection of disjoint sets

s = ﬂ X, :Vg€Crs, X € {{z:g(x) =+1},{z: g(z) = -1}}
9ECIXY s Xy )]

is a partition of X with the property that, Vh € C,

minP(z € A: h(z)=y) <,
AGJT,(; ey

and Ve > 0,Vh € C,
P U AeJ.s:minP(x € A: h(x) =y) >cP(A) <T
Toyey T €

Proof By Lemma 21, with probability at least 1 — ¢, C; ;5 is a T-cover of C. Furthermore, note that
for every g € C, 5 and every A € J, s, either every © € A has g(z) = +1 or every € A has
g(z) = —1 (i.e., g is constant on A). Therefore, Vh € C,

minP(z € A:h(z)=y) < Y min P(z € A: h(z) # g(z))
Aer s VY AT, ;950

< min PxeA:h(z)#g(x)) = min P(z: h(z) #g(z)) <7

~ geC eC
g 7,6 A€J7—75 g 7,6

The final claim follows by Markov’s inequality, since on the above event, Ve > 0, Vh € C,

P (U {A €Jrst r;g}?’(x € A:h(z)=y) > 67’<A>}>
=P (U {A € Jrs:P(A) > o,gg)r)m(x €A:h(z)=y) > eP(A>})

_p (U {A € Jps P(A) > 0,min DEEATME Z0) €}>

yey P(A)

1 . PlxreA:h(zx)=y) 1 . T
<= A == A:h(z)=vy) < —.
< 6AE P( )Iyrg)r} PCA) . > Iynelgp(w € (@) =y) < 2

EJT(S AGJT,(S
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Appendix B. Proofs for Results in Section 5

This section provides proofs of the main results of this article.

B.1 The Realizable Case

We begin with the particularly-simple case of Theorem 3.

Proof of Theorem 3 The lower bounds proportional to d and Log (min {1, |C|}) are due to Kulka-
rni, Mitter, and Tsitsiklis (1993) (lower bound in terms of the covering numbers) in conjunction with
Kulkarni (1989); Kulkarni, Mitter, and Tsitsiklis (1993) (lower bounds on the worst-case covering
numbers). Specifically, Kulkarni, Mitter, and Tsitsiklis (1993) study the problem of learning from
arbitrary binary-valued queries. Since active learning receives binary responses in the binary clas-
sification setting, it is a special case of this type of algorithm. In particular, for any probability
measure P over X, and ¢ € (0, 1), let V(e,C,P) denote the minimum cardinality || over all
e-covers H of C (under the P(DIS({,-})) pseudometric), or else N (g,C, P) = oo if no finite
e-cover of C exists. Then the lower bound of Kulkarni, Mitter, and Tsitsiklis (1993, Theorem 3)
implies that, Ve, 6 € (0,1/2),

Agg(e, ) > sup [logy ((1 — 6)N(2¢,C, P))]. ()

Furthermore, the construction in the proof of Kulkarni, Mitter, and Tsitsiklis (1993, Lemma 2)
implies that supp N'(2¢, C,P) > min {| L | ,|C|}, so that combined with (9), we have

Mns(e.) > [togs (1= oymin{ | i}

Ford € (0,1/3)and e € (0,1/8), and since |C| > 3 (by assumption, intended to focus on nontrivial
cases to simplify the expressions), the right hand side is at least %Log (min {%, |C]| }) Furthermore,
if d < 162, this already implies that for any € € (0,1/3) and 6 € (0,1/3), Agg(e,0) > $1n(3) >

6%18. Otherwise, in the case that d > 162, Kulkarni (1989, Proposition 3) proves that, if e € (0,1/9),

supp N (2¢,C, P) > exp {2 (L- 45)2d} > exp {d/162}. Combined with (9), this implies that
fore € (0,1/9) and ¢ € (0,1/3), if d > 162, then

2 d 3 d 2e d
A > |1 Zed/162) | 5 T —1 2) > 21 > .
RE(E,0) > [ng <3€ 2 162 ogy(e) — logy 5) = 162°%2\ 3 ) 2 10

Thus, regardless of the value of d, we have Arg(e,0) > 6%:58.

For the final part of the proof of the lower bound, a lower bound proportional to s A % may be
credited to Dasgupta (2005, 2004). It can be proven as follows. Let x1,...,zs and hg, h1, ..., hg
be as in Definition 2, let t = s A (%1 , and let us restrict the discussion to those ¢ + 1 distributions
Pxy € RE such that the marginal distribution P of Pxy over X is uniform on {z1,...,z:},
and f5 . € {ho,h1,...,h}. Then for any active learning algorithm A, for any n < ¢/2, let Q;
denote the (possibly random) set of (at most n) points X; that .4 (n) requests the labels of, given that
[Py, = hi(fori € {0,...,t}), and let h; denote the classifier returned by A(n) in this case. Since
the marginal distribution of Pxy over X is fixed to P for all ¢ + 1 of these Pxy distributions, we
may consider the sequence X1, X», ... of i.i.d. P-distributed random variables to be identical over
these ¢+ 1 possible choices of Pxy, without affecting the distributions of ); and ill (see Kallenberg,
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2002). Thus, we may note that h; = ho whenever x; ¢ Qo, since z; ¢ () implies that all of the
labels observed by the algorithm are identical to those that would be observed if f7*>XY = hg instead

of fp,., = hi. Now, if it holds that P (73 (ZL’ :ho(z) # ho(x)> > 6) < 4, then since every z; with

i < thas P({z;}) > &, we have that P (w e {1,...,t}, ho(z;) = ho(xi)) > 1 — 6. But if this
holds, then it must also be true that

max P (73’(:13  ha(z) # hi(z)) > 5) > ;thp (73(:17 hi(x) # hi(z)) > 5)

1e{1,....,t}

=1
> 1;19 (ilz(l’z) = hO(%)) = %E [Z:; 1 Vh(w%) = ho(l’z)]]
> G| 1 # QL o) = o] | = 1B |31l Qo] [hute) = hom)}]
> %E 1 [VZ S {1, ,t},ho(&?ﬂ = hO(xz):| ; 1 [xz é’f QO]]
> %E 1 [vie {1t} o) = ho(an)] (= n)
= t_J (VZ c {1,...,t},il0(.%’i) = h0($1)> > t_Tn(l _5) Z 1% 2 % > 5

Thus, when n < ¢/2, at least one of these ¢ + 1 distributions Pxy (all of which are in RE) has
P (erp,, (A(n)) >¢e) > 6. Since this argument holds for any A, we have that Agg(e,d) >
t/2 = %min {5, [%1 } > %min {5, %} Combined with the lower bounds proportional d and
Log (min {%, |C| }) established above, this completes the proof of the lower bound in Theorem 3.
The proof of the upper bound is in three parts. The first part, establishing the ¢Log (2)
upper bound, is a straightforward application of Lemma 22. The second part, establishing the

Losg‘is)Log (%) upper bound, is directly based on techniques of Hanneke (2007a); Hegediis (1995).

Finally, and most involved, is the third part, establishing the sLog (%) upper bound. This part
is partly based on a recent technique of Wiener, Hanneke, and El-Yaniv (2014) for analyzing
disagreement-based active learning (which refines an earlier technique of El-Yaniv and Wiener,
2010, 2012). Here, we modify this technique by using an e-net in place of random samples, thereby
refining logarithmic factors, and entirely eliminating the dependence on 4 in the label complexity.

Fix any €,6 € (0,1). We begin with the ¢Log (1) upper bound. Let m = [C;_—dLog (%)W and
(= {%’ (dLog (1) + Log (%))—‘ , for ¢ as in Lemma 22. Define

m[logy(2/8)]+¢
P = argmin max Lpis((n, (X;).
i€{1,....[loga (2/6)1} . h,g€C: _ 122 . ({h.gh)\ <27

T i1y 41 LD1s(gh gy () =09 =M 1082(2/0)TF

Consider an active learning algorithm which, given a budget n € N, requests the labels Y; for
t € {m (i - 1) +1,....m (i - 1) + min {m,n}}, and returns any classifier h,, € C with
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ZT&}:}ST Ill{m’n} 1 [ﬁn(Xt) # Yt} = 0 if such a classifier exists (and otherwise returns an arbi-

m(ffl)erin{m,n}

trary classifier). Note that, for Pxy € RE, Et:m (i=1)+1

1 [ fho, (X0) # Yt] — 0 with prob-
m (i—1)+min{m,n} 1 [ibn(Xt) y Yl} _

ability one, and since f;;XY € C, the classifier fzn will have Zt:m (i-1)+1
. o L i—1)+min{m, 5
0 with probability one. Furthermore, this implies Z:”E;(lzl)ﬂirll{m n} 1 |:hn( X,) # Foey ( Xt)} _

0 with probability one. Additionally, Lemma 22 implies that, with probability at least 1 — ¢,
the set {Xt 'te {m (i - 1) +1,... ,m%}} is an e-net of P for {DIS({h,g}) : h,g € C}.
Since both h,,, Ip, € C, this implies that if n > m, then with probability at least 1 — 4,

P (1S ({in, f5,, })) < = Since Pxy € RE, erpyy (hn) = P (D18 ({hn. 5, })):
Thus, if n > m, then with probability at least 1 — 9, erp, ., (]Aln> < e. Since this holds for any

Pxy € RE, we have established that Agg(e,d) < m < 2c—;dLog (%) This also completes the
proof of the entire upper bound in Theorem 3 in the case s = oo; for this reason, for the remainder
of the proof below, we restrict our attention to the case s < co.

Next, we turn to proving the Lofg‘i( ) Log (é) upper bound, based on a technique of Hanneke
(2007a); Hegediis (1995) (see also Hellerstein, Pillaipakkamnatt, Raghavan, and Wilkins, 1996 for

related ideas), except using an e-net in place of the random samples used by Hanneke (2007a). Let m
and 7 be defined as above, and denote I = {Xt it e {m (i — 1) +1,... ,m%}}. The technique
is based on using a general algorithm for Exact learning with membership queries, treating U{ as the
instance space, and C[U{] as the concept space (where C[U/] is as defined in Section 7.3). Specifically,
for any finite set V' C C and any z € &, let hy,jv)(7) = argmax,cy [{h € V : h(z) = y}]
(breaking ties arbitrarily); hy.;(v) is called the majority vote classifier. In this context, the following
algorithm is due to Hegediis (1995) (see Section 7.3 for the definition of “specifying set”).

MEMB-HALVING-2
Input: label budget n
Output: classifier A,

0.V« ClU],t+ 0
1. While V| >2andt <n
2. h « hmaj(V)

3. Letk = TD(h,ClU],U)

4. Let{Xj;,...,X;. } € U* be a minimal specifying set for h on U with respect to C[U/]
5. Repeat

6 Letj = argmin |{g €V :g(X;) =h(X;)}|

MISUIR Y

7 Request the label Yj., lett«+—t+1

8
9

V<—{h€V:h(Xj):Y3}
Until A(X;) # Y;or [V| < lort =n
10. Return any hy in V (or hy, arbitrary if V' = ()

Fix any Pxy € RE, and note that we have f5 = € C, so that 3n* € CU] with h*(z) =
[Py (), Vo € U. Since Y; = fp  (X;) for every j with probability one in this case, we have
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that with probability one the set V' will be nonempty in Step 10, so that hy, is chosen from V; in

particular, we have h*(X;) = Y; for every X; € U, and hence h* € V in Step 10. Furthermore,

when this is the case, Hegediis (1995) proves that, letting XTD(C[U],U) = Jax TD(h, ClU],U)
A

(see Section 7.3), if

XTD(C[U],U)
1V logy (XTD(CU],U))

log(ICUA])),

then the classifier h,, returned by MEMB-HALVING-2 satisfies h,, = h*, so that hy, (z) = [Py (T)
for every 2 € U.'* Since XTD(C[U],U4) < XTD(C, m), and Theorem 13 implies XTD(C, m) =
s A'm < s, and since Log(XTD(C[U],U)) < 1V logy(XTD(C[U],U)) and z +— Tog(@) 1S non-
decreasing on N U {0}, and the VC-Sauer Lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972)
implies |C[U/]| < (w)d we have that for any n > QLOg( ) logy (<44), if Vj, f5 . (X;) = Yj, then
hn(z) = [Py, (x) for every x € U. Thus, forn > 2170 Log( ) log, (<4), with probability one the
classifier h,, returned by MEMB-HALVING-2 has h,, (z) = [Py, (x) for every z € U. Furthermore,
as proven above, w1th probability at least 1 — 0, U is an e-net of P for {DIS({h g}) : h,g € C}.
Thus, since f5 ., h, € C, by a union bound we have that for any n > 2L0g( ) log, ( ) with
probability at least 1 — §, P(DIS({f5., hn})) < e. Since Pxy € RE, this implies erp,., (h,) =

PDIS{ fpy hn})) < € as well. Thus, since this reasoning holds for any Pxy € RE, we have
established that

sd em sd 1
< — ) < / — 1.
ARrg(g,0) < 2L0g(5) log, ( 7 > < 16Log (266) Log(ﬁ)LOg <€>

Finally, we establish the sLog (%) upper bound, as follows. Note that, since |C| > 2, we must
have s > 1. Fix any Pxy € RE. Let T = {DIS(Vs,) : S € U,,en ™, h a classifier}, and for
eachxy,...,xs € X and yy,...,ys € Y, define

(Z)S(xlv sy sy Y1y - 7yﬁ) = DIS({Q cC:Vi < 579(:67;) = yl}) eT.

Let & be as in Lemma 24, and define 0’ = 6/ (2[logy(1/¢)]), £ = [2¢’ (sLog(3¢') + Log(1/d"))],
m = [2¢s], and j = [(2m[logy(2/8")] + 2¢)/e]|. Consider the following algorithm.

14. The two cases not covered by the theorem of Hegediis (1995) are the case |C[if]| = 1, for which the algorithm returns
the sole element of C[i/] (which must agree with f5 ., onlf) without requesting any labels, and the case |C[U/]| = 2,
for which one can easily verify that XTD(C[U],U{) = 1 and that the algorithm returns a classifier with the claimed
property after requesting exactly one label.
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Algorithm 0
Input: label budget n
Output: classifier A,

0.Vo+C,jo=0

l.Fork=1,2,...,|n/m]

£1{j € (ot + Lioe s jit + 7} Xj € DIS(Vii1)}| < mlogy(2/8')] + ¢

3 Return any an € Vi_1 (or an arbitrary classifier an if Ve =10)

4. Let j1,- -, Jkmllogy(2/6)]+¢ denote the m[logy(2/6")] 4 £ smallest indices in the set

{ie {jk—1+1,...,jk—1 +J} : X; € DIS(V,_1)} (in increasing order)

o

5. Letji = jk,m[log2(2/5’ﬂ+€
6. Foreachi € N, let
L=< (i1, e yisy Y1y s Ys) ENT XY im(i— 1) <iyp < -+ < idg < i,
mi
Z ]ld’E(XJ'k,z‘l """ Xik,ig 7y17---795)(Xjk,t) =0
t=m(i—1)+1
7. Let

m[logy(2/8")]+¢

ik:, argmin - imax e, E HqSﬁ(Xjkil,...,Xjkis,y1,..-,y5)(Xjk,t)
i€{1,...,[logy(2/6")1} \11sstssYLse o Ys ) €L t=m[logy(2/6")]+1

8. Request the label Y, , for each t € {m <5k — 1) +1,..., mgk}

9. LetV, + {g € Vi_1:Vte {m (%k — 1) +1,... am%k} 7g(Xjk,t) = Y]kt}
10. Return any h, € Vin/m|

Fix any k € {1,..., [n/m]|}. In the event that V},_; is defined, let
My =|{j € {Jim1+1,.... k1 +J} - X; € DIS(Vi1) }|.

By a Chernoff bound (applied under the conditional distribution given V},_; and jj,_1) and the law
of total probability (integrating out Vj,_; and jj_1), there is an event E/,’C of probability at least 1 —¢’,
on which, if Vj,_; is defined and satisfies

P(DIS(Vi-1)) > 2" (m[logy(2/8")] + ), (10)

then My, > (1/2)7P(DIS(Vi_1)) > m[logy(2/6')] + £, in which case the algorithm will execute
Steps 4-9 for this particular value of k, and in particular, the set V}, is defined. In this case, denote

Uy = {Xj
Next note that, on the event that Vj,_; is defined, the M}, samples

e it E {m (%k — 1) +1,... ,m%k}}, which is well-defined in this case.

{X;:j€{jp—1+1,....dk1+]},X; € DIS(Vi_q)}
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are conditionally independent given Vj_1, jx_1, and M)}, each having conditional distribution
P(-|DIS(V_1)). Thus, applying Lemma 24 under the conditional distribution given Vj_1, jr_1,
and M), combined with the law of total probability (integrating out Vj_1, jx—1, and My), we
have that there exists an event Ej, of probability at least 1 — ¢’, on which, if V;_; is defined, and
Mj, > m[logy(2/6)] + ¢, then Uy is a 1-net of P(+|DIS(Vj_1)) for

{¢5(Xjk7i1,...,Xjkﬂ.s,yl,...,ys) . m (%k - 1) F1<iy < oo <ig < Mgy Y1, Ys € y}.
1
Together, we have that on Ej N E,’ﬁ, if Vi._1 is defined and satisfies (10), then U} is a %—net of
P(-|DIS(Vk—1)) for the collection (11).

In particular, Theorem 13 implies that, for any z1,...,x,, € X™ and classifier f € C,
Ji1,...,is € {1,...,m} such that {g € C : Vj < s5,9(z;;) = f(z;;)} = {9 € C:Vi <
m, g(z;) = f(z;)} (see the discussion in Section 7.3.1), and since the left hand side is invariant to
permutations of the i, values, without loss of generality we may take iy < --- < ¢5. This implies that

on Ej N B, if Vj,_1 is defined and satisfies (10), then 3}, ..., i, € {m (%k _ 1) 1, mzk}
with ¢f <--- <} such that

qbﬁ(Xjk,l/l P ’Xjk,ifj ) f(X]k,z’l )7 sy f(X]k,le))

— DIS ({g eC:Vte {m (%k - 1) +1,.. mzk} L9(X,,) = f(Xjk,t)}) — DIS(Viy, s),

so that

DIS(Vuk’f) €
{¢5(Xjk,il7"'7Xjk,i57y1""’y5) : m(ik— 1) < il <...< is < m%k,yl,...,ys c y}

But we certainly have DIS(Vy,, r) NUj, = (). Thus, by the %—net property, on the event £y, N Ey, if
Vi—1 is defined and satisfies (10), then every f € C has

P (DIS(Viy )| DIS(Ve)) < . (12)

Also note that, since Pxy € RE, we have f;;XY € C, and furthermore that there is an event F
of probability one, on which Vj,Y; = f7*9xy (X j). In particular, on E, if Vi_; and V}, are defined,

then Viy = Vi, s Vi1, which implies DIS(Vy) = DIS (Vuk, £ 0 VH) C DIS(Vi_1).

Thus, applying (12) with f = f7*pxy, we have that on the event E N Ej, N E}, if Vj,_; is defined and
satisfies (10), then V}, is defined and satisfies

P(DIS(V)) = P(DIS(Vj)|DIS(Vg-1))P(DIS(Vi-1))
<P (D18 (Vig g5, ) [DIS(Vic) ) PDIS(Vi 1)) < %P(DIS(Vk,l)).

Now suppose [n/m| > [logy(1/¢)]. Applying the above to every k < [logy(1/€)], we have
that there exist events E}, and Ej, for each k € {1,...,[logy(1/¢€)]}, each of probability at least

1 — ¢’, such that on the event £ N ﬂ,?igf(l/aﬂ E;. N Ey, every k € {1,...,[logy(1/¢)]} with
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Vj—1 defined either has P(DIS(Vj_1)) < 27! (m[logy(2/8")] + £) or else Vj, is defined and
satisfies P(DIS(Vy)) < 3P(DIS(Vj_1)). Since Vy = C is defined, by induction we have that on
the event £ N ﬂ,Eigf(l/aﬂ E;. N Ey, either some k € {1,..., [logy(1/¢)]} has Vj_; defined and
satisfies P(DIS(Vj_1)) < 251 (m[logy(2/8")] + £), or else every k € {1,..., [logy(1/)]} has
Vj, defined and satisfying P(DIS(V;)) < 3P(DIS(Vi_1)). In particular, in this latter case, since
P(DIS(Vh)) < 1, by induction we have P(DIS(Viiog,(1/6)7)) < 2~ Mogx(1/6)] < ¢,

Also note that 25! (m[logy(2/8')] +¢) < e. Thus, denoting by k the largest k < [n/m|
for which Vj, is defined (which also implies V}, is defined for every k € {0, ..., k}), on the event
EnN ﬂﬂogz 1/eN E}. N Ey, either some k < (k + 1) A [logy(1/¢)] has P(DIS(Vi_1)) < &, so
that (since k +— Vj, is nonincreasing for k < k) P(DIS(V;)) < P(DIS(Vi-1)) < e, or else
k > [logy(1/¢)], so that P(DIS(V;)) < P(DIS(Viiog,(1/e)])) < €. Thus, on the event E' N
N ,Lliglz’(l/ o)l E; N Ey, in any case we have P(DIS(V})) < e. Furthermore, by the realizable case
assumption, we have f7*;XY € Vy, and if f7*3XY € Vj—1 in Step 9, then (on the event E) f5 € Vj
as well. Thus, by induction, on the event E, f5 € V. In particular, this also implies V} # 0
on E, so that there exist valid choices of h,, in V7. upon reaching the “Return” step (Step 3, if
k < |n/m], or Step 10, if k = |n/m]). Thus, h, € V; as well on E, so that on the event £/ we

have {x : h() # ff;xy(x)} C DIS(V; ). Therefore, on the event £ N mﬂogz(l/eﬂ BN By, we
have

erpyy (hn) =P (2 hn(@) £ fp, (2)) <P (DIS (1)) <e.

Finally, by a union bound, the event £ N ﬂﬂog? 1/eN E}. N Ej has probability at least 1 —
[logy(1/€)]28" = 1 — §. Noting that the above argument holds for any Pxy € RE, and that the
condition [n/m] > [logy(1/e)] is satisfied for any n > 9¢'sLog(1/¢), this completes the proof
that Agg(e, §) < 9sLog(1/e) < sLog(1/e). [ |

B.2 The Noisy Cases

To extend the above ideas to noisy settings, we make use of a novel modification of a technique
of Kidridinen (2006). We first partition the data sequence into three parts. For m € N, let X! =
X (m-— DL X2 = Xg(m-— 142 @ and let X2, = X3,,, and Y3 = Y3,,; also denote X; = { X} }m 1
Xy = {X }m Xy = {X330 1, Y3 = {V31°_,,and Z = {(Xyn, Vi) }S°_;. Additionally,
it will simplify some of the proofs to further partition X3 and Y3, as follows. Fix any bijection
¢ : N2 = N, and for each m, £ € N, let Xf’me = Xg(m,e) and Yri,ﬂ = Yg(m,ey

Fix values €,0 € (0, 1), and let 4. be a value in [¢/2, 1]. Let k. = [logy(8/4:)], and for each
ke{2,...,ke}, define

= 16 max{c, 8} k. dLog 2k, + Log 64k, 7
2ke 5 §

for c as in Lemma 21. Also define my_ 41 = 0, m = m2. and ¢c 5 = 2 + {2%”4 In (Wﬂ .

Also, for each m € {1,...,m}, define kpm = max{k € {2,...,k.} : m <} and let G, =
23+2km 1n(321mg. 5/5). Fix a value 7 = 515257%. Let J;5/2 be as in Lemma 27, applied to the
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sequence X! = X! to simplify notation, in this section we abbreviate J = J7.5/2- Also, for each
x € X, denote by J(x) the (unique) set A € J with = € A, and for each m € {1,...,m}, we
abbreviate J,,, = J(X?2). Now consider the following algorithm.

Algorithm 1
Input: label budget n
Output: classifier h,,

0. Vo« C,t+0,m<«+0
1. While t < nand m < m
m+—m+1
If X2, € DIS(Vyn—1)
Run Subroutine 1 with arguments (n — ¢, m);
let (¢, y) be the returned values; let t < ¢ + ¢
5 Ify # 0and 3h € V,,,_1 with h(X2) =y
6 Let Vi, <+ {h € Vi1 : K(X2) =y}
7. Elselet V,,, < V1
8
9

Bl

Else let VI” +— Vi1
. Return any h,, € V,,,

Subroutine 1
Input: label budget n, data point index m
Output: query counter g, value y

0. Om,0 < 0, q <— 0, €m70 +~ 0
1. Repeat
2. Letlpgr1 < min{l > 4y, 4 : XSM € Jm} (or by, g1 < 1if this set is empty)
Request the label Yn?;,zm,ﬁl; let o g1 < Omyg + Y%gm’qﬂ; letg+q+1
If |om,q| > 31/2¢In(32mq. /0)
Return (g, sign(opm q))
Else if ¢ > min{n, G, }
Return (g, 0)

Nk W

In this algorithm, the first part of the data (namely, X;) is used to partition the space via
Lemma 27, so that each cell of the partition has f5  nearly-constant within it (assuming f5 €
C). The second part, Xo, is used to simulate a commonly-studied active learning algorithm for the
realizable case (namely, the algorithm of Cohn, Atlas, and Ladner, 1994), with two significant mod-
ifications. First, instead of directly requesting the label of a point, we use samples from the third
part of the data (i.e., X3) that co-occur in the same cell of the partition as the would-be query point,
repeatedly requesting for labels from that cell and using the majority vote of these returned labels
in place of the label of the original point. Second, we discard a point X?2, if we cannot identify
a clear majority label within a certain number of queries, which decreases as the algorithm runs.
Since this second modification often ends up rejecting more samples in cells with higher noise rates
than those with lower noise rates, this effectively alters the marginal distribution over X, shifting
the distribution to favor less-noisy regions.
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For the remainder of Appendix B.2, we fix an arbitrary probability measure Pxy over X x Y
with f5 € C, and as usual, we denote by P(-) = Pxy (- x V) the marginal of Pxy over X'. For
any x € X, define vy, = ‘n(w;ny) — %} and define

Ye =sup{y € (0,1/2] : yP(z : v, <) < ¢e/2}.

Also, for the remainder of Appendix B.2, we suppose 9. is chosen to be in the range [¢/2,7.|. For
each A € J, define

ya =argmaxP (z € A: fp (x) =y) = sign </ f7’§XYd77> ,
yey A
and if P(A) > 0, define n(A; Pxy) = Pxy (A x {1}|A x Y) (i.e., the average value of n(z; Pxy)
over z € A), and let v4 = |n(A4; Pxy) — &|. For completeness, for any A € J with P(A) = 0,
define n(A;Pxy) = 1/2 and 74 = 0. Additionally, for each n € N U {oo} and m € N, let
(Gn,ms Yn,m) denote the return values of Subroutine 1 when run with arguments (n, m).
Denote by F; the X;-measurable event of probability at least 1 — /2 implied by Lemma 27,
on which every h € C has
minP(x e A:h(z)=y) <71 (13)

S
ey VY

and Vvy > 0,

P<U{A€J:minP(xeA:h(x):y)>7P(A)}) < (14

-
yey v

We now proceed to characterize the behaviors of Subroutine 1 and Algorithm 1 via the following
sequence of lemmas.

Lemma 28 There exists a (X1, Xy, X3)-measurable event Ey of probability 1, on which Ym &
{1,...,m}, P(Jm) > 0and {{ e N: X} , € Jpn}| = o0

Proof For each m, since each A € J with P(A) = 0 has P(X2, € A) = 0, and J has finite size, a
union bound implies P(P(J,,) = 0) = 0. The strong law of large numbers (applied under the con-
ditional distribution given .J,,,) and the law of total probability implies that % Zf:l 1, (X3 ) —

m7j
P(J) with probability 1, so that when P(J,,) > 0, Z§:1 1,, (X3 ;) — oo. Finally, a union
bound implies P(Im < m : P(J,) = 0or [{£ € N : XE;L’Z € In} < o0) < Zﬁzl P(P(Jm) =

0) +P(P(Jm) > 0and [{£ € N: X7} , € Jp}| < 00) = 0. [ |

Lemma 29 There exists a (X1, Xg)-measurable event E of probability at least 1 —71m > 1—§/512
such that, on Ey N By, everym € {1,...,m} has f5__(X3) = YJ,.-

Proof Noting that, on Fj, (13) implies that
P (@ fpuy (0) £ u) = D P (v € At fpyy (o) # 3a)
AeJd

= minP (z€A: fp, . (x)=y) <,
dey v
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the result follows by a union bound. |

Lemma 30 There exists a (X1, Xo)-measurable event Es of probability at least 1 — 12687 n>1-—
d/4 such that, on E1NEs, everym € {1,...,m} has P (x € Jm: fp,, (¥) # me> < 155 P (Jm).

Proof Noting that, on F1, (14) implies that

P (az P (2 € J(z): IPey (&) # Yy ) > 1i287)(<](x))>

:P(U{AGJ:P(QC/EA:]‘}*;XY( )#yA)>mP(A)})

=P <U {AG J:ryréi)rjlp(x’ €eA:fp (@) =y)> ng( )}) < 1287-,

the result follows by a union bound. |

Lemma 31 VA € J,
1 *
Pxy (A x {ya}) > 5 P(4) + A’M’(d%) ~PzeA: fp. (x)#ya).

Proof Any A € J has

Pxy (A x {ya}) >/A]1 [Py (€) = ya (;“‘%) P(dx)
/(UW) P(ee A f (@) £ 1)
A
=P+ [ Plan) - P (o e A fry ) £ 0.

Lemma 32 On the event EyN E1 N Es, everym € {1,...,m} with~;, > /128 has Pxy (Jm X

{v5.,}) > Pxy(Jm X {—y4,,}), and every m € {1,... ,m} with me Y P(dx) > (/2)P(Jm)
has

63 63
|| ePta) 20, P) 2 G [ P > ep () (1s)

Proof Jensen’s inequality implies we always have y4P(A) < [, 7.P(dz). In particular, this
implies that any A € J with P(A) > O and P(z € A : f5 () # ya) < 153P(A) and
va >¢e/128 has [, v, P(dz) — Pz € A: fp  (2) #ya) 2 7aP(A) Pz € A: fp  (2) #
ya) > (/128)P(A) — (¢/128)P(A) = 0, so that Lemma 31 implies Pxy (A x {ya}) > 3P(A),
and therefore Pxy (A x {ya}) > Pxyv(A x {—ya}). Since Lemmas 28 and 30 imply that, on
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Eo N Ey N Es, forevery m € {1,...,m}, P(J) > 0and P(z € Jp @ 5 (2) # yy,,) <
158 P (Jm), we have established the first claim in the lemma statement.

For the second claim, the first inequality follows by Jensen’s inequality. For the second in-
equality, note that any A € J has yaP(A) > Pxy (A4 x {ya}) — 3P(A), so that Lemma 31
implies yAP(A) > [, 7.P(dx) —P(z € A: fp_ () # ya). Therefore, since Lemma 30 im-
plies that, on Ey N E3, every m € {1,...,m} has P(z € Ji, : fp, (2) # Y1) < 155P(Im)s
we have that on Ey N E3, any m € {1,...,/7m} with [, 7,P(dz) > (¢/2)P(Jm) has P(z €

I poy (@) # ya,) < & . YeP(d), so that v, P(J) > me v P(dx) — Pz € Jp :

[Py () # yi,) = = ;. VoP(dx). The final inequality then follows by the assumption that

[5 P (dz) > (£/2)P(Jm). u
Lemma 33 On Ey, Vy > (1/4)7,,

P(U{AEJ:WAgy}) < 3P(z 2y, < 4y),

and ¥y € (0, (1/4)~], 3
£
< -

T2

P(Ut4eima<qy)

Proof By Markov’s inequality, for any v > 0, any A € J with [, 7,P(dz) < yP(A) must have
Pz € A: v, > 2v) < 3P(A), which implies P(z € A : v, < 27) > SP(A). Therefore,

P <U {A eJ: /A%P(dx) < 7P(A)}>
<P (U {A eJ:PlxeA:in <2y > ;P(A)}> <2P(z 19z <27v), (16)

where the last inequality is due to Markov’s inequality.
Also, for every v > 0, since yaP(A4) > Pxy (A x {ya}) — 1 P(A),

P(U{AGJ:PYAS’)/}) :P(U{AEJ:’VAP(A)S’YP(A)}>
<P (U{ae s Portax ) - 3P < 7P} )

Lemma 31 implies Pxy (A X {ya}) — %P(A) > fA vz P(dx) — P(x € A : f7*3XY($) # YA), SO
that the above is at most

P(U{aes: [P <vpa)+ Pl e a: fo ) 20 }).

By a union bound, this is at most

P(Ufaes: [wran <2pa))

+P (U {AeJ:PaeA:fp, (@) #ya) > vP(A)}). (A7)
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On E1, (14) implies that

P(U{AG J:PlxeA: fp. (x) #ya) >ry7>(A)}) <T<

£
8y’

=193

Furthermore, by (16),

P (U {A €J: | yP(dz) < 2777(A)}> <Pz 1y, < 47).
A
Using these two inequalities to bound the two terms in (17), we have that

P(U{AGJVYAS’Y})3273(36:%<4’y)+%.

By definition of ., if v > (1/4)v., we must have 4yP(z : v, < 47) > VP(z : 72 < ve) > €/2,
so that & < P(z : 7, < 4y), which implies

2P (x : v, < 47) + % < 3P(x: vy, < 4y),

which establishes the first claim. On the other hand, if 0 < v < (1/4)~., we have 4YP(x : 7, <
4y) < e/2, so that 2P(x : 7, < 4v) < 7, which implies

e 3e
2P(x : < 4 — < —,
(T2 7)+87_87

This establishes the second claim, since (combined with monotonicity of probabilities) it implies

PQﬁAeJn%gﬂ)gp@ﬁAeJWAg@m%ngj;

Lemma 34 On Eq, Vh € C,
ety (1) = cxpy (Fpy ) 57+ [ Lh(a) # iy, (22100 P ()
Proof For any h € C, we generally have
ety (1) = expyy (Fp) = [ (@) # Fp,., (@)]29:P(do)

For each A € J, let y{ = argmax, .y, P(x : h(z) = y). Vo € X, 1[h(z) # Ipey (@)]272 < 1.
Therefore,

[ 110) # o @220 <P (2 ba) £ i) o8 Ty (5) # )

+ / L[y 2y # Ys@))27P(dz). (18)
{#h@) =40y I5 ey @ =V }
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By a union bound,

P (22 h(@) # o) oF Fy (@) £ s ) P (2 h@) £ ) + P (25 fy (@) # 1) -

Furthermore, on E1, (13) implies the right hand side is at most 27. Combining this with (18) implies

CIPyy (h)_erpxy (f’;()xy) < 27—+/ ]l[yg(x) 7é yJ(x)}2’7xP(d$)' (19)

Bh(@)=y 4y F gy @)=V }

Also,

l[yﬁ(x) # Yi(2)|272P(dx)

/{x-h(x):y§<z TPy (@) =yJ<z>}
27, ) < 2
/{ s o P > / 2 P(dz).

K
Ac Tyl Fya =YirSPyy (2) yA} ATyl #ya {xeA'foy yA}

Since f5, .. (z) = sign(2n(z; Pxy) — 1) for every x € X, any measurable C' C X’ has
" 1
Pxy ((z,y) 1z € Coy = fp,, (@) = /C (2 +%c> P(dz).
Therefore, for each A € J,
1 . 1
¥aP(A) = Pxy (A x {ya}) = 5P(A) = Pxy ({z € A: fp,, (2) = ya} x {ya}) — 5P(4)

_ /{ st 7on] (; + %) P(da) — SP(4)

Pldr) ~ 3P (v € A fpy () £ a).

/{xeA Fpyy (@) yA}

Therefore,
>/ 2 Pa) < Y P(re A b (6) #ya) + 294P(A).
AeTyh#ya {xeA:prY yA} AeJ:yh#ya

On E1, (13) implies that the right hand side is at most

T+ Y. 27aP(4).
AeJyli#ya

Combining this with (19), we have that on E1,

erpyy (h) —erpyey (fhyey) <37+ Y 274P(A). (20)
A€ Tyl #ya
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Foreach A € J and z € A, if y® # ya, then either h(z) # [Py, () holds, or else one of
h(z) # y or f3 _(x) # ya holds. Thus, any A € J with g4 # y 4 has

PA) < [ (1110 # Fpy (@] 41 [h@) £ 93] 41 [Fy (@) # 3a] ) Pl
=P (:c €A:h(z) # yfii) +P(zeA: fp. (x)#ya)+ /A 1 [h(z) # fpy, (2)] P(dz).
Combined with (20), this implies that on Fy,

CIPxy (h) — CIPxy (f']gxy)

<3r+ Y 2'm<73 (zeAih@) £yh)+P(xe A fp, (@) #ya)
Ae Tyl #ya

# [ 1[10) # Fpo (@] Pla))

Since 2v4 < 1, the right hand side is at most

37’—1—277(3?614:]1(3;)7&%@1)—i—ZP(mEA:f;Sxy(x);éyA)

AeJ AeJ

Y oy / 1[h(x) # fyy ()] P(da),

AeJyli#ya
and on F, (13) implies this is at most
s 3 2 [ 1[hle) £ f,, (0] Pldo)
A ) A
€Sy FyA

<5r+ Z /A 1 [h(a:) # [Py (x)] 2y4P(dz) = 57 + / 1 [h(a:) # [Py (1:)] 27 7(x)P(dz).

AeJ

Lemma 35 There is a Z-measurable event E, of probability at least 1 — 0/32 such that, on
Mizo B VE € {2, ko), Vm € {igeqr + 1,7}, ¥n € NU{oo}, fnm € {0, 5, (X2)},

. 321mq. . _ .
rm = ’Vmax{%%g 272k} In ( "}5'1 76)—‘, and lf’)’Jm =2 ’ then Yoo,m = f;;XY <X7%1)

Proof Since G¢pnm < Goo,m» and §p ;m = 0 whenever G, m < Goo,m. it suffices to show the claims
hold for §oo 1 and Yoo, for each m € {1,...,m}.
Foreach m € {1,...,m}, let £, 1,4 2, ... denote the increasing infinite subsequence of val-

ues £ € N with XS’1 ¢ € Jm, guaranteed to exist by Lemma 28 on Ej; also, for each ¢ € N, define
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Omg = 20 =1 Y3 1, ;- Note that these definitions of £, ¢ and o, ¢ agree with those defined in Sub-
routine 1 for each ¢ S doo,m- Let Ey denote the event that E occurs and that Vm € {1,...,m},
vq € {17 sy %,6},

32mq.
|om,g — a(2n(Jm; Pxy) — 1)] < \/2qln (%6]5) 1)

For each m € {1,...,m} and ¢ € {1,...,¢.s}, Lemma 28 and Hoeffding’s inequality imply
that (21) holds with conditional probability (given .J,,,) at least 1 — §/(32mg. ). The law of total
probability and a union bound over values of m and ¢ then imply that £, has probability at least
1—65/32.

Now fix any k € {2,...,k.} and m € {fgy1 + 1,...,74}. Since k,, = k, the condition in
Step 6 guarantees Goo m < [22’”3 In (%ﬂ . Furthermore, if v, > 27, then for

| (32mq5,5>
V5 0 ’
2
2qYm > 4\/2q1 (3 mq€5>

In particular, recalling that 2¢vy,, = |¢(2n(Jm; Pxy) — 1)|,

we have

32,
1q(20(Jm; Pxy) — 1)] > 44/ 2¢1n (”;q‘s) (22)

Since q. 5 > [22’”3 In (%)" > g, the event E4 implies that (21) holds, so that

321
Omyq > 4(20(Jm; Pxy) — 1) — \/2q In < ”;qa&).

Thus, if ¢(2n(Jm; Pxy) — 1) > 44/2¢qIn (Wﬁ#), the condition in Step 4 will imply §oo,m < ¢,

and since q S ‘jm, that ono,m S y LikeWise, (21) lmphes
32mqe s
Omq < 420(Jm; Pxy) — 1) + \/2q In <5€)

so that ¢(21(Jym; Pxy) — 1) < —44/2¢In (%) would also suffice to imply oo, < ¢ and

Yoo,m € Y via the condition in Step 4. Thus, since (22) implies one of these two conditions holds,
we have that on Ey, if v;,, > 27 then Goo m < [ 8 In (:%(;15‘5)-‘ and Joo,m € V.
JTYL
It remains only to show that §oom € {0, f5 (X2)}. This clearly holds if the return value
originates in Step 7, so we need only consider the case where Subroutine 1 reaches Step 5. Due
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to the condition in Step 6, this cannot occur for a value of ¢ > ¢, (since ¢, < 1 < ¢e5),

so let us consider any value of ¢ € {1,...,¢.s}, and suppose |0y, 4] > 34/2¢In <32ﬁi#).
On the event Ey, (21) implies that if o > 34/2¢1n (32’7#) then q(2n(Jm; Pxy) — 1) >

oma= \/qun (%) = 2\/2q = (%) > 0, and likewise if 07, ¢ < —34/2¢In (3277#)
|

then ¢(2n(Jpm; Pxy) — 1) < omgq +4/2¢In (%) < —24/2¢In (%) < 0; thus, since

120)(Jm; Pxy) — 1| = 27y, if |om,q| > 34/2¢1In (%), then

—
s \/2 N <3mqa> .
q )

and sign(2n(Jy,; Pxy) — 1) = sign(o,,,,). In particular, since ¢ < g.5 < 22kF51n <732ﬁ;q&5),

this implies
2 32
v > \/ In (";q“s> >97h2 5 /198,

qe,5

Therefore, Lemma 32 implies that on ﬂ?zo E;, sign(2n(Jm; Pxy) — 1) = y.,,; combined with
the above, this implies sign(oy, ) = ¥y.j,,. Furthermore, Lemma 29 implies that on ﬂ?zo E;,
Yi = [Pyy (X2), so that sign(o, 4) = [Py (X2). In particular, recall that if Jo , € ), then

[ 3\/2qum In <%). Thus, since the condition in Step 6 implies Goo,m < Gm <

q=,5, we have that on ﬂ?zo Ej, if foom € V. then Joom = fp,.,. (X2). This completes the proof
that Joo,m € {0, fp,, (X2)}on ﬂ?:o E;. Since we established above that §o m € Vif 7y, > 27F
on Ej, this also completes the proof that §oo m = f5 (X7,) when vy, > 27% on ﬂ?:o E;, 1

Lemma 36 There exists an (X1, Xy)-measurable event Es of probability at least 1 — 0 /64 such
that, on Es, for every k € {2,... k.} with P (U {A eJ:vya € [Q_k, 21_k] }) > 2k_35/k€,

Hm e {1,... M), € [2*’“,21*’“} }( > (1/2)iP (U {A €J:nae [2*’“,21*} }) .

Proof Fix any k € {2,..., k. }. First, note that a Chernoff bound (under the conditional distribution
given J) implies that, with conditional probability (given .J) at least

1-ew{- TP (U{aesime a4,

we have

Hm e{1,... ), € [2_"3,21_’“”‘ > %P (U {A €J € [2—’“,21—’“”) Q4
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IfP(U{A€J:vae [27F217F]}) > 2" 3¢ /k., then
exp {—ﬁ;kP (U {A eJ:yp€ [2_]“,21_]“} })}

8k 64k, _ 64k, 1)
< exp {—2k8Log <5> ok 35/]{:5} = exp {—Log ( 5 >} = G

Thus, by the law of total probability, there is an event G5 (k) of probability at least 1 — 4 /(64k) such
that, on G5(k),if P (U {A € J : ya € [27%,217F]}) > 2873¢/k, then (24) holds. This holds for
all k € {2,...,k:} on the event E5 = ﬂg;Q G5(k), which has probability at least 1 — /64 by a
union bound. |

We are now ready to apply the above results to characterize the behavior of Algorithm 1. For
simplicity, we begin with the case of an infinite budget n, so that the algorithm proceeds until
m = m; later, we discuss sufficient finite sizes of n to retain this behavior.

Lemma 37 Consider running Algorithm 1 with budget co. On the event ﬂ?:o E;,VEe{2,... k},
Vm e {l,...,my}, fp,, € Vinand

Vi C {h €C:Vm' <mwith~y , >27% h(X2,) = f;XY(an,)} .

Proof Fix any k£ € {2,...,k.}. We proceed by induction. The claim is clearly satisfied for

Vo = C. Now take as the inductive hypothesis that, for some m € {1,...,mg}, JPyy € Vin—1 C
{h €C:Vm' <m—1withvy; , > 27k h(X2)) = f;;xy(an,)}.

If X2, ¢ DIS(Vy,—1), then we have V,,, = V,,,_1, so that fh, € Vin as well. Furthermore,
since fp, . € Vip—1, the fact that X2, ¢ DIS(V;,_1) implies that every h € V;, has h(X2) =
f%XY(X,zn). Therefore,

Vi = Vo1 N{h € C: h(X2) = b, (X2)}
- {h eC:Vm' <m—1withvy, , >27% h(X2,) = ff;xy(X,%l,)}
N{heC:hX2) = fh., (X2)}

c {h €C:Vm <mwithyy , > 27 n(X2,) = f;xy(Xﬁl,)} .

Next, consider the case that X2, € DIS(V;,_1). Lemma 35 implies that on ﬂ?:o Ej, Joo,m €
{0, f7*3XY (X?n)} If Yoo,m = 0, then V,,, = Vj;,—1, so that f7*3XY € V,, by the inductive hypothesis.
Furthermore, since k < l;:m, Lemma 35 implies that on ﬂjfzo Ej, if v, > 2=% then Uoom 7# 0;
thus, if Joo m = 0, we have v, < 27k 5o that

Vi = Vit € {he Covm' <m—1withy , > 275 R(X2,) = fp,, (X2}

m

= {h e C:Vm' <mwith~; , > 27k h(X2) = fﬁxy(an,)} .
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On the other hand, if §oo,m = fp,,,, (X2), then since [Py, € Vm—1 by the inductive hypothesis,
the condition in Step 5 will be satisfied, so that we have V,,, = {h EVi—1: h(X2) = [Py (X2) }
In particular, this implies f5 = € V,;, as well, and combined with the inductive hypothesis, we have

Vin=Vm- N {h eC: h(X?n) = f’;sxy(Xgn)}
c {h € C:Vm' <mwithyy, , > 2% h(X2,) = fgxy(X;,)} .

The result follows by the principle of induction. |

In particular, this implies the following result.

Lemma 38 There exists an event Eg of probability at least 1 — 0 /64 such that, on ﬂ?:o E;, the
classifier hoo produced by running Algorithm I with budget oo has €Ipy (ﬁoo) —erpyy (fp,,) <e

Proof Fixany k € {2,... k.}andlet /) = [(1/2)meP (U{A € J:ya € [27%,217F]})]. Note
that

0> 8ckP (U{A€T :ya € [27F,217F])) (dLog <8k€73 (U{AeT:va€ [2—k,21—k]})>
ok 2ke

+ Log <6%5k5> >,

for ¢ as in Lemma 21. Let m; = min {m eN: Y™ _, 1[246 2171@](7‘] )= fk} U {oo}. Note

m

that, if 7 < oo, then the sequence {Xﬁl 1 <m <, v, € [2*’“, 21*’“] } is conditionally i.i.d.
(given J and my,), with conditional distributions P (‘ U {A €J:v4 € [2_"3, 21_'“] }) Applying
Lemma 21 to these samples implies that there exists an event of conditional probability (given J and
1) at least 1 — 6/(64k.) on which, if iy, < oo and P ((J{A € J : v € [27F,217F]}) > glkj,
letting

Hy={h e C:Vm < i with, € [275, 2] h(X2) = fpy, (X2},

every h € H;, has

k
P (22 h(@) # Fpoy @) € [274,217%]) < 8kP (U{A € J?; € [27F,21-H})
which implies
P (33 th(x) # fpyy (w) and vy, € [2*]“,21*’1) < zl;i
By the law of total probability and a union bound, there exists an event Eg of probability at least
1 — 0/64 on which this holds for every k € {2,...,k.}.

Lemma 37 implies that, on ﬂ?:o E; Yk e{2,... k:},

Vi C Vin, C {h € C:Vm < iy, with s, > 275 h(X2) = fgxy(X;)} .
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Lemma 36 implies that, on E5, Vk € {2,... k.}, if P (U {A eJ:ya€ [2"“, 21_]“] }) > ng,

then |[{m € {1,...,my} 1 v, € 277, 217F]}| > (1/2)mP (U{A € J:ya € [27F,217F]}),
so that my < my. In particular, this implies m; < co and

{heC:vm <y withvy, > 275 h(X2) = i (X2)} C Hy.
Combining the above three results, we have that on ﬂ?:o E;, for every k € {2,...,k.} with

P (U {A eJ:vya € [2"“, 21_k] }) > 523%, Vin € Hi, and therefore every h € Vi3 has

P (:1: th(x) # [Py (x) and v, € [2_1“, 21_’“}) < zkl;

Furthermore, for every k € {2,...,k.} with P (J{A € J 174 € [27F,217F]}) < g%, we also
have that every h € Vj; satisfies

P (2 hx) # iy (1) and e € [27,2174))

<P(U{aes e o)) < 28

Combined with Lemma 34, we have that on ﬂ?:() E;, every h € Vj has
erpy, (h) — erpXY(f;SXy) <57+ / 1 [h(x) + f7§XY (:U)] 27J(x)77(da:)

< 5742l kep (m‘ D h(x) # [Py (w) and ) < 2*’“5)

I i 22—kp <x - h(x) # f;;xy(x) and Vi(z) € [2—k7 21—k])
k=2

< Br 4 2lkep (U {A €J < 2*’“6}) + iQ”éZf. (25)
k=2 €

k . ~
Next, note that 225:2 22_k§Tj = (ke — 1)226 < §. Furthermore, since 2~k < Ve /8 < e /4,

Lemma 33 implies that, on F',

P<U{A€J:7A§2—ke})<3i_

T 2%
Plugging these facts into (25) reveals that, on m?:o E;,Vh € Vi,
3 € 3 e 453

—ke
erpyy (h) —erpyy (fp,,) <57+ 2! 2 + 3 <57+ 3¢ + 3 < Fo° <e.

The result follows by noting that, when the budget is set to co, Algorithm 1 definitely reaches

m = m before halting, so that ho, € V. ]

The only remaining question is how many label requests the algorithm makes in the process of
producing this h, so that taking a budget n of at least this size is equivalent to having an infinite
budget. This question is addressed by the following sequence of lemmas.
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Lemma 39 Consider running Algorithm 1 with budget cc. There exists an event E7; of probability
at least 1 — /64 such that, on E1 N E7, Vk € {2,...,k.},

Hm e {1,..., M}y, <2278 X2 € DIS(Vm_l)H

< 17max {77 (x Yy < 237]“) , eA }ﬁ%k
2%

Proof Fix any k € {2,...,k.}. By a Chernoff bound (applied under the conditional given .J) and

the law of total probability, there is an event G7(k) of probability at least 1 — &, on which

Hm e {1,..., M) iy, < 21—’f}) < log, <6%Sk5) + 2P (U {A €J < 21—k}> .

Lemma 33 implies that, on E',

P (U {A e€J:ya < 217]“}) < max{377 (a: Fyr < 237’“) ,23;} i
Therefore, on E1 N G7(k),
Hm € {1, i) iy, <24F X2 € DIS(Vm,l)H < Hm {1, . i}, < 21—"?}‘

4
< log, <6 5k6> + 6e max {73 (iL' T 23_k) ’2’67} my. (26)
€

Furthermore, since 4. < 7., and

e . 64 64k 64k 64k
g > L > 4L > 21
2:)/8 k= 2]%:}/8 Og < 5 > N Og < 5 > N Og2 < 5 ’

(26) is at most

1
(66 + > max {73 (33 e < 23_k) ,EA} my < 17 max {7) <JU e < 23_k) ) EA }mk
2 29e 2%e

Defining E7 = ﬂi; 5 G7(k), a union bound implies E7 has probability at least 1 — §/64, and the
result follows. u

Lemma 40 Consider running Algorithm 1 with budget oo. There exists an event Eg of probability
at least 1 — ¢ /64 such that, on Eg N ﬂ?:o E;,Vke{3,.. .k}, Vke{2,... .k -1},

[{m e {1,....au} - X7, € DIS(Viu1) }|

< 6e max {73 (m e < 22_]5) ,;}mk

Ve

z 4 12 1
+91¢ <2l+kk + Log <6€C>> (65Log ( 586> + Log <5>) ,

for c as in Lemma 21 and ¢ as in Lemma 23.
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Proof The claim trivially holds if § = oo, so for the remainder of the proof we suppose § < co. Fix
any k € {3,...,k.}and k € {2,...,k — 1}, and note that

Hm S {1,...,77%} : Xgl € DIS(mel)}’
< Hm €1, )iy, <2°F X2 ¢ DIS(Vm_l)H

+{{metr, i, 22 h X2 €D} @)

We proceed to bound each term on the right hand side. A Chernoff bound (applied under the
conditional distribution given J) and the law of total probability imply that, on an event Gg) (k, k)
of probability at least 1 —

_6

256k2°

Hm € {1, . i) i, <278 X2 ¢ DIS(Vm_l)H

< logy <25§k§) + 2eP <U {A €J:vys < Q_E}> My,

and Lemma 33 implies that, on F, this is at most

9 k2 _
log, < o0 5) + 6e max {77 (x e < 22*]“) , 28 }mk

1) Ve

Now we turn to bounding the second term on the right hand side of (27). We proceed in two
steps, noting that monotonicity of m — DIS(V,,,) implies

‘{m e{l,...,my} vy, > 24—“,)(,3I € DIS(Vm—l)H
< Hm e{l,...,mz} vy, >27F X2 ¢ DIS(mel)H

+ Hm e{mg+1,....,m} g, > 27]27X72n € DIS(Vﬁm)H : (28)

We start with the first term on the right side of (28). Let L = Hm e{l,....mz} v, > 2_’5}

B

and let €1~, ..., ¢, denote the increasing subsequence of values ¢ € {1,...,7mz} with v;, > 2k,
Also, let jz = max {1, [log, (i /(s + Log(1/6)))]}, let My = 0, and for each j € N, let

) ) 9 27
M; = [623 <5L0g (2]) + Log ( 56§5jk>>-‘ ,

for ¢ as in Lemma 23. Let V;; = C, and for each 7 < L, let

V= {h €C:Vje(l,...,i},h(X}) = f;jxy(xgj)}.

Let ¢ be the function mapping any U € X* to the set DIS({h € C : Vz € U, h(z) = f5  (2)}).
Fix any j € N. By Theorem 13, if M; < L, then there exist i1,...,4s € {1,...,M;} such that
{heC:Vre{l,... s}, h(XZQi )= IPyy (XZ_ )} = Vy;, (see the discussion in Section 7.3.1). In

particular, for this choice of 41, . . ., is, we have c;Ss(Xz1 . 521 ) = DIS(VA}j ); furthermore, since
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¢s 1s permutation-invariant, we can take ¢; < --- < i without loss of generality. Also note that

X 521, o X €2M ., are conditionally independent (given L and J), each with conditional distribution

P (‘ U{A €J:ys> 2*’5}). Since (when 0 < L) {X2..... X}, }N6o(XF ..., XE,) =

{X7,....X EM} NDIS(Vy ) = (), Lemma 23 (applied under the condltlonal distribution given L
J

and J) and the law of total probability imply that, on an event Ggi) (k, k, j) of probability at least

1-— 256k:g I ,if M; < L, then

P (DIS(V]\}J_)‘ U{aet:maz2F}) <27, (29)

Furthermore, this clearly holds for j = 0 as well. Since P (DIS (Vi*_l) ’ U {A eJ:iys> 2*’5}>
is nonincreasing in ¢, for every j > 0 with M; < L, and every i € {M; +1,...,M;41 A L}, on
Gé”)(l?:, k,j7), P (DIS (V;*_l) ‘U {A €J: iy > 2"“}) < 277, Since every j > j]; has M; >
my, > L, this holds simultaneously for every j with M; < L on ﬂ?“:_ll Géii)(E, k,j).
Now note that, conditioned on .J and L,
. L
{]]'DIS(Vi*—l) (XZ) -P (DIS (Vtz*—l) ‘ U {A e J: YA > 2_k}> }i:l

is a martingale difference sequence with respect to X 521 ooy X 42L. Therefore, Bernstein’s inequality
for martingales (e.g., McDiarmid, 1998, Theorem 3.12), applied under the conditional distribution

given J and L, along with the law of total probability, imply that there exists an event G(m) (k, k)
of probability at least 1 — 256k2 such that, on G(m)(k: k)N ]‘“_1 G(”)(k k,j),

L Go—1
25612 .

> Tois(vz,) (X7) < log ( ) +2e Z 277 (Mjyy — M)

=1

256k2 256k27:\ \ ~
< log, < 5 a) + 4e + 4dec <5L0g <23k> + Log ((;‘”“)) J%

- 256k2\ \ -~
§866<5jk+Log< 5? €>>jk.

By Lemma 37, on ﬂ?:o E;,Ym e {1,...,mg},

Vi C {h €C:¥m' <mwithy, , >27F h(X2,) = f,,*;XY(X;,)} .

In particular, this implies Vy,_1 C V*, for all ¢ < L. Therefore, on ﬂjfzo E; N Géiii)(k, k) N
S GEY (k).

Hme{l, S} v, > 2% X2 € DIS(V }‘ Z]lDIS ) (X2)

256k2\ \ -~
< Z Ipisvr ) (X7) < 8eé (m + Log ( 5 5)) Jg- (30)
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Next, we turn to bounding the second term on the right hand side of (28). A Chernoff bound
(applied under the conditional distribution given V7, and .J) and the law of total probability imply

that there is an event G g )(k: k) of probability at least 1 — on which

256k2’
{me g+ 1, e} o, > 278 X2 € DIS(Vay) |

< log, (25§k§> +2¢P (DIS (Vi) N {A €J > 2—’5}) Fn. (1)

Also, by a Chernoff bound (applied under the conditional distribution given .J), with probability at

least
1 —exp {—(1/8)73 (U {A €J:iya> 2_E}) ﬁ’%} ,
we have

L > (1/2)m;P (U {A €J s> 2—’5}) . (32)

1P (UfAaeT:ima=2"}) = 2 Log (245), then

exp{f(1/8)73 (U {A €Jiya> 2—’5}) mk} < 25561%

Thus, by the law of total probability, there is an event ng) (k) of probability at least 1 — ﬁ, on
which, if P (U{A € J 74 2275} ) = 5 Log (245), then (32) holds. Let
5= max{j e {0,1,...,jp — 1} Mj < (1/2)izP (U{A €J > 2—’5})},
and note that
. ﬁl,;P(U{AeJ:’VAZT’f})
J = |logy (33)

4c (25L0g (2515) + Log (256k ))

(29) implies that on ﬂ] il ”)(k: k,7), if (32) holds, we have

P (DIS (V})

{Ae Jiya> 2"5}) <27,

Furthermore, Lemma 37 implies that, on ﬂ?:o Ej, Vi, C V. Altogether, on ﬂ?:o E;N Gg}) (k)N
e , & 8 256ke
N GO k). 1f77(U{A€J.7A22 })zm—’;Log(T),then

P (DIS (Vi) N {A €J s> 2*’5}) <o ip (U {A €J s> 2*’5})
< :i— (25L0g (23’“) + Log (25§k82>> )
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where the last inequality is by (33). Otherwise, if P (U {A €J:iya > 2_E}) Log (256k5)
then in any case we have

P (D18 (Vi) n(J{a e Tiqa =278} ) <P (U{a € Tia 2 27F})
5 ton (B95) < 5 (g (42) 1 10g (252
mg, o mg, o

Combined with (31), this implies that on ﬂ] o Ej ﬂG(w)(k k)N G ( k)N ﬂ]"_l (i) (k,k,j),

Hm e {mp+1,... )iy, >27F X2 € DIS(VmE)H
256k2 7 ~ 25642
< logy < 56 E) + 16651?% (25Log (2%;) + Log < b0 5))
0 mg 0

7 - 256k2 ; - 2562
< 3265@ <5jk + Log ( 5 €>> < 6dec2hk <5jk + Log < ))
my

Plugging this and (30) into (28), we have that on ﬂ?:o E;N Géiii)(l%, kE)n G(w)( k k)N Gév) (k)N
In—1 A1) (7 5.
S GEY (k).

Hm S {1, ce ,mk} YT, 2 Q_E,X,?n S DIS(mel)}‘
_ 2 2 5 _ B 2 2
< 8eé <5j,; + Log <5§k5>> g + 64ec2rF (5]',; + Log ( 5?% ))
2 ~ ~ 256k2
= 8ec (23+k_k —i—j,;) <5jk + Log ( 5 5)) .

Combined with the above result bounding the first term in (27), we have that on ﬂ?zo E; ﬂGg) (k, k)
NG (k, k) N GEY (k, k) NG (R) NN GY) (R, K, ).

[{m € {1,... i} : X3, € DIS(Viu-1)}|

9 2 -
< log, < 5§k5> + 6e max {77 (:U Cve < 22_k> ,26} o
Ve

- F ~ ~ 256k2
+ 8ec (23+k k —i—j;;) <ﬁjk + Log ( 5 E))

B N
,2%}mk+(1+86c) (2 —l-jk) <5jk+Log< 5 .

(34)

< 6e max{P(z e < 22_E>

Noting that s > d, a bit of algebra reveals that
my < 32ck. Log 128Kk2 < 29ck?
s + Log(1/9) €

~ 210ck2 3 210ck2
. < 13 < e €
Ik = 10g2 < 63/2 ) = QLOg ( 63/2 ) )

62
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and therefore

Z ~ ~ 256k2
(1 + 8ec) (23+k_k + j,;) <5jk + Log ( 5 = ))
3 210¢k2 3 210¢)2 2562
< ~ 3+k—k € hd € €
< (1 + 8ec) <2 +2L0g( e )> <25Log( =Yz )+Log< 5 >)
? 3 210¢k2 3 216k 1
~ 3+k—k € e € -
< (14 8ec) <2 +2L (53/2 >> <25Log< Tz ) —i—Log((s)).
Furthermore, since k. < /32/e, this is at most
? 3 215¢ 3 226¢ 1
~ 3+k—k | © s °C B sC 1
(14 8ec) (2 +2L0g(65/2>> (25L0g(57/2>+L0g (6))
z 4 12 1
< 91¢ <21+’f—k + Log <6€C>> <65Log ( 680> + Log <5>> .

Plugging this into (34), we have that on ﬂ?zo E; ﬂGg) (k, k) ﬂGgii) (k, k) ﬂva) (k, k) ﬂGg)) (k)N
an IG(“)(k’ k ])

{me{1,....mu}: X2 € DIS(Vin_1) }|

< 6e max {73 (m Y < 22_E) ,g}mk

27
; 4 12 1
1916 (21+’“—’f + Log (650» (65L0g ( 80) + Log <5>> . (35)
Letting
ke 5k_1
Bs= () | 6 ﬂ GO (k, k)N G (ke k) N G (ke k) 0 () GY (R, K, 9) |
k=3 k=2 j=1

we have that (35) holds forall k € {3,...,k.} and k € {2,...,k — 1} on the event Fg N ﬂjfzo E;.
A union bound implies that E5 has probability at least

S = O
- +5 30+ -
2 256k 2= | “256K2 ;256@,5
k
P 5 56 5
S LERES ) ) W R I
26 2-F Va2l T s T T wm

We can now state a sufficient size on the budget n so that, with high probability, Algorithm
1 reaches m = m, so that the returned h,, is equivalent to the h classifier from Lemma 38, which
therefore satisfies the same guarantee on its error rate.
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Lemma 41 There exists a finite universal constant ¢ > 1 such that, on the event ﬂ?:o Ej, for any
k€ {2,...,k.}, for any n of size at least

- a2 () ) )
" Egm {P (290 <27) 75} 2; (dLOg (1) + Log (i)) Log (;) Log (718) :

(36)

running Algorithm 1 with budget n results in at most n label requests, and the returned classifier
hy satisfies erp.., (hy) — erp,., (fpyy) < € Furthermore, the event ﬂ] o Ej has probability at
least 1 — 6.

Proof The value of ¢ keeps the running total of the number of label requests made by the algorithm
after each call to Subroutine 1. Furthermore, within each execution of Subroutine 1, the value ¢ + ¢
represents the running total of the number of label requests made by the algorithm so far. Since the
n — t budget argument to Subroutine 1 ensures that it halts (in Step 6) if ever ¢t + ¢ = n, and since
the first condition in Step 1 of Algorithm 1 ensures that Algorithm 1 halts if ever ¢ = n, we are
guaranteed that the algorithm never requests a number of labels larger than the budget n.

We will show that taking n of the stated size suffices for the result by showing that this size
suffices to reproduce the behavior of the infinite budget execution of Algorithm 1. Due to the
condition m < m in Step 1 of Algorithm 1, the final value of ¢ obtained when running Algorithm
1 with budget oo may be expressed as

m
Z (_?oo,m]]-DIS(meﬂ (X?n) .
m=1

Lemma 35 implies that, on ﬂ?zo E);, this is at most

n 8 320mq..
Z { 2 9—2k ln< 5 86>-‘ Ip1s(vin-1) (X72n)

m=1
o 32ie 5
1—k] o2k+4 2 2
<331 [, <27 2B <5> Lo (X2).
m=1 k=2
The summation in this last expression is over all m € {1,...,m} and k € {2,...,k.} such that

k < kp,, which is equivalent to those m € {1,...,m} and k € {2,..., k.} such that m < 7.
Therefore, exchanging the order of summation, this expression is equal to

ke T

>3 1 |, <2 2% <32ﬁ§q5’5> Lpis(vin-1) (X7m)
k=2 m=1
= 222k+41 (3217;%5) Hm e{l,...omu} i, <278 X7 € DIS(Vm—l)}’ - G0
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Fix any value k € {2,...,k.}. Forany k € {k, ..., k.}, Lemma 39 implies that, on ﬂ?:o E;,

Hm € {1, ... i) iy, <2178 X2 € DIS(Vm_l)H

< 17max {73 (ac e < 23_k) , EA }mk
2%e

This implies

k ~

< 32
Y 9%ty <”;‘”> {{m e {1, o, <2178 X2 € DIS(Vi-) ||
k=k

321
< Z 22649 11y <77;q875> max {77 (a: Y < 23*’“) , 225 } My,

ke k+17 ¥
_ 2 ck k 64k 32mq. s
< : 3-k\ _€& e e e :
< ]}k maX{P <x Vo < 2 ) ) 2%} s (dLo ( 5 >+Log< 3 >> Log( 5 >
e ap) € 2’”250140%(715) 64 1 32cd
< : - — e _
< kgkmax{P@ e < 2 ) ) 2%} 5 <dL0g< 5 >+Log(5>>Log( > > ,

(38)

where this last inequality is based on the fact that k. < /32 /&, combined with some simple algebra.
If k> 2, forany k € {2, k= 1}, Lemma 40 implies that, on ﬂ?zo E;,

Hme{l, k) s <2878 X2 € DIS(Viy H
SG@max{P(m Yo < 227 ) }
+91¢ <21+k ¥+ Log <6€>> (65Log( 580> + Log <(15>)

This implies

F |

—1 ~
32
o2+ <”;q€5) Hm € {1, )y, <278 X2 e DIS(Vm_l)H

321 7
22’“+9 In < mq<§75> max {73 (37 Y < 22*]“) ,E} M
d 27
321 z 4 12
22k+1léln (Trgq€75> (QHkk + Log (6 c)) (65Log < B
€
k=2
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Since
k-1 k+8
268k, 2k 64k
22k iy, < =) +L =
5 e 52 (s () 4 (M)
k:+8
< 2ok, <dLog (2]@5) + Log (64]%))
€ € 1)
k+12 A
< 2 cLog(1/5-) <dLog <64> + Log <1)>
€ € 1)
and

k—

Z 64 64c 2 64
& 9 3

k=2

we have that

M7

.
gk (3”;%5) ({m e {1, i) iy, <2VF X2 e DIS(vm_l)})

e
[|

2

~ k-1
2 _
<2%In <3mq€5> max {P (:c e < 22_k> ,E} 22k 7
1) 27, P
321 1\ i . 6dc
s (225 s (42 s 0 (})) S (2541 (°2))
) ‘ €

=2

ok+12..1
2m = g
(P25 el (o <) 2} D (i (04 (1)
27 € )
0 (2) (o (2] (3 ()
e
_ 2k+25 ¢ og
< max< P <x Y < 22*’?) ,i ( ) dLog ol + Log 1 Log 32cd
29, € 0 ed
+ 92k+165 <65Log <128 > +Lo <1>> Log (64C> Log (326d) .
€ 1) € €d

Plugging this and (38) into (37) reveals that, on ﬂ?:o E;, if k> 2,
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Z Goom D18V 1) (X7)

_ 2k+25 00 (L 4 1 9
< max<{ P (3: Y < 22_’“) ,i <%) dLog 64 + Log [ = ) | Log 32cd
27, € € 0 ed
| 92k+16; 6sLog 128¢ + Log 1 Log 64c Log 32cd
€ 5 € ed
ke 2k+25 ] og ( >
. 3-k) _& 64 1 32cd
+ Zmax{?(w Y < 2 ) , 2%} . <dLog( >—|—Log<6>> Log( = )
< o2k sLog ! + Log 1 Log d Log 1
€ 0 0 €
R ok 2% 1 1 d 1
+ CZ max (:c Yo < 2 ) e~ dLog +Log (=) |Log(— ) Log|{— ),
& e 5 =5) "\

for an appropriate finite universal constant ¢ > 1. Furthermore, if k = 2, (38) and (37) already
imply that, on ﬂ?:o E;,

M
>

som Lprs(v, 1) (X)

ke k
<¢)» maxqP (x Y < 23*]“) , Ai z dLog ! + Log 1 Log i Log Ai ,
— Ve ) € 0 €0 Ve

again for ¢ > 1 chosen appropriately large.

Therefore, for a choice of ¢ as above, on ﬂ?:g E;, for any k € {2,...,k.}, the final value of ¢
obtained when running Algorithm 1 with budget oo is at most (36). Since running Algorithm 1 with
a finite budget n only returns a different hy, from the oo returned by the infinite-budget execution if
t would exceed n in the infinite-budget execution, this implies that taking any n of size at least (36)
suffices to produce identical output to the infinite-budget execution, on the event ﬂ?:o Ej: that is,

hn = heo. Therefore, since Lemma 38 implies that, on ﬂ?:o Ej, erpy, (hoo) — erpyy (fpy,) <&
we conclude that for n of size at least (36), on ﬂ?zo Ej, erpy, (ﬂn) —erp,, (f;;xy) <e.
Finally, by a union bound, the event ﬂ?:o E; has probability at least

0 0 0 1) 1)
L0 a3 a2

We can obtain the upper bounds for Theorems 4, 5, and 7 from Section 5 by straightforward
applications of Lemma 41. Note that, due to the choice of 4. in each of these proofs, Algorithm
1 is not adaptive to the noise parameters. It is conceivable that this dependence can be removed
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by a model selection procedure (see Balcan and Hanneke, 2012; Hanneke, 2011, for discussions
related to this). However, we do not discuss this further here, leaving this important issue for future
work. The upper bounds for Theorems 6 and 8 are based on known results for other algorithms in
the literature, though the lower bound for Theorem 6 is new here. The remainder of this section
provides the details of these proofs.

Proof of Theorem 4 Fix any 3 € [0,1/2),¢,0 € (0,1), and Pxy € BN(3). Any v < 1/2— 3 has
P(z : v» <) =0, and since we always have 7. > ¢/2, we must have 7. > max{1/2 — 3,¢/2}.
We may therefore take 4. = max{1/2 — 3,¢/2}. Therefore, taking k& = k. in Lemma 41, the first
term in (36) is at most

(12_102%)2 <5Log (i) + Log <(15>) Log (i) Log <i) ;

while the second term in (36) is at most

cmax < P (z 'yz<'y€)“ }6 dLog 1 + Log 1 Log 4 Log Ai .
Ye ) Te€ 3 0 ed Ye

SinceP(x"yx<1/2— ):0<1/25and77(x Y2 <ef2) <1< 2=
P (z: 7z <) < £, so that the above is at most

s (2 b)) e (o ()

Therefore, recalling that s > d, since Lemma 41 implies that, with any budget n at least the size of
the sum of these two terms, Algorithm 1 produces a classifier A, with erp., (h,) —erp,,, ( [pyy) <
¢ with probability at least 1 — §, and requests a number of labels at most n, we have that

Agng) (e, 6) < (13102_;? <5Log (i) + Log (;)) Log <§5> Log (i)
e (e (2) 108 (5)) 1 (5 o (i)
< g (1 (2) ) o () )

On the other hand, Giné and Koltchinskii (2006) have shown that for the passive learning method
of empirical risk minimization, producing the classifier h,, = argmingcc > o _; L[h(Xp) # Yol
if n is of size at least

=z (s (e (=39) ) 7106 ()

for an appropriate finite universal constant ¢, then with probability at least 1 — J, erp, ., (ﬁn) —
erpyy (fpy,) < €. Therefore, since Theorem 10 implies Op, (¢/(1 — 28)) < Opy, ((e/(1 —

26)) A1) §min{ L 2BV1} we have

Apns)(e,0) < (1_125) <dL0g <min {5, ! _625}> + Log (;)) :
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Together, these two bounds on Apy(g) (e,d) imply the following upper bound, simply by choosing
whichever of these two methods has the smaller corresponding bound for the given values of ¢, 9,
08, d, and s.

gy (sLog (2 )+L0g(%))L0g( 5) Log (1)

m (dLog (mm{ 26}) + Log ( ))

The statement of the upper bound in Theorem 4 represents a relaxation of this, in that it is slightly
larger (in the logarithmic factors), the intention being that it is a simpler expression to state. To arrive

at this relaxation, we note that sLog (%) + Log (%) < sLog (%), and dLog (min {57 1_525 }) +
Log (3) < dLog (&) Log (&) Log (1), so that the above is at most

e () e () s ()

Next, we turn to establishing the lower bound. Fix ¢ € (0,(1 — 23)/24) and § € (0,1/24].
First note that taking ¢ = 7 252 ,[1/¢|} in Lemma 26, we have RR(k, (, 8) C
BN(/3), so that Lemma 26 implies

Apx(p)(€,6) S min

k—1)In (g5
Ao (6:0) 2 Argec (€)= Arsecn (€/2)1 —28),0) 2 2 30 _)2;)(245)

, 1-2¢) Bln(gf) B . 1—28—4e 1
> min{e -2, 2 | 5 = - fmin e -2 R ().

3 . 126 1
> Wmm {5 — 2, 5} Log (5> . (39

Additionally, based on techniques of Kéairidinen (2006); Beygelzimer, Dasgupta, and Langford
(2009); Hanneke (2011), the recent article of Hanneke (2014) contains the following lower bound
(in the proof of Theorem 4.3 there), for £ € (0, (1 — 2/)/24) and § € (0,1/24].

povcnte 2o (2| i (g )| 5 [ e (5))
> o {2 | 1= ion (5) 45 | o}

If =292 25) Log( ) > 1, then 2 {(l_gB)QLog (%)J =25 26) Log( ) 257 25) Log( ) so that
Apn(s)(e:8) Z g Log (). Otherwise, if =z Log (g5) < 1, then since RE C BN(f),

and |C| > 2 impliesd > 1 > (1 gﬁ)QLog (815) Theorem 3 (proven above) implies we still
have Apn(s)(€,d) = Are(e,0) 2 o= 2B)QLog( ) in this case. When d = 1 these observa-

tions further imply Apn(g) 2 On the other hand, if d > 1, and if > 1, then

(1—2p)2 2[3) 10(1— 26)

d—1 B d B S S
6 L10(1725)2J > o240 (i=2p)2> SO that Apn(g)(e,0) 2 = 2,3 10(1725)2 < 1, then

since RE C BN(f3), Theorem 3 implies we still have Apn(g)(€,0) > Arg(e,6) 2 d 2

282" Otherwise, if
_dp
R {=2pp 0
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. ag d d d
this case as well. If 3 > 1/4, then G057 = T1-257 > (i—ap)2> S0 that Apx(g )(€,6) 2 TR
Otherwise, if 5 < 1/4, then (1712 7z < 4, so that Theorem 3 implies Apnepy(e,0) > Ar ( ,0) 2
dz ﬁ. Altogether, we have that

A > 1 1
BN(B8) (5, 5) = m max ,BLOg S s dp. (40)
When s < 2, min {5, %} < 2, so that (40) trivially implies
1 1-2 1
Apns) (€:0) 2 (1—2p) ™ {min {ﬁ,gﬂ}ﬂLOg (5> ,d}- (41)

Otherwise, when s > 3, we have s — 2 > 5/3, so that min{s — 2, 1_525} > %min {5, 1_526}'
Combined with (39) and (40), this implies (41) holds in this case as well.

Proof of Theorem 5 We begin with the upper bounds. Fix any a € [1,00), @ € (0,1), &,0 €
(0,1), and Pxy € TN(a,a). For any v < (ﬁ)lfa, by definition of TN(a, «), we have
YP (x: v, <7y) < a”yl/(l_a) < ¢/2. Therefore, since we always have 7. > /2, we have

1— N 1—
’YaZmaX{(ﬁ) a,%},sothatwecantake%:max{(ﬁ) O‘,%}_

Therefore, taking & = 2 in Lemma 41 implies that, with any budget n of size at least

& ok 1 1 d 1
EZ max{min{a?(?’_k)a/(l_a), 1} , A} (dLog( ) + Log()) Log() Log<A> ,
k=2 ’YE € (5 5(5 ’75

(42)
Algorithm 1 produces a classifier hy, with erpy, (hy,) — erpy, (fp,.,.) < € with probability at least
1 — 4, and requests a number of labels at most n. This implies Arn(q,q) (€, 9) is at most (42).

First note that

A

ok 91+ke 2[10&%2(16/%)1 2 _
- < _ < - 3— < 32 mm{(2a/)2 2 520472,4872}
9

m@\m

75 ’YE
= 32min {(2 — 2a)*?*(2a)**a*e?* %, 4e7?} < 128min {a’** 2, e7?}.  (43)

2 200—2

Furthermore, since e 72 < a’¢ only if £ > a Ve

, this is at most 128 min {a2 20— 2 1/0‘5_1}.
Also, for a > 1/2, letting k(, o) = [logg (8 (a’)(1 a)/a)-|, we have k(, o) > 2. Additionally, for

1-2«a
a>1/2, 2k o is nonincreasing in k. In particular, if k(, o) = 2, then

me{ om0} 2 < i Sl g < Bhe iz,
€ £

k=K(a,0)
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Otherwise, if k(q,o) > 3, then

ke ka,ay—1

k ’ k ke /
> min {26370/ 1| Ty Dy Bowen
k=2 c k=2 k=k(q,q) €
16 ,1-0 8(k-—2), j1-a 8k
< — / « € / « ki «
< ) —ays =)
Furthermore, since (1 — a) =~ <1, we have
8k —o  8ke 1-a 16k
J(al)la (1 . O[) ~ (2a)a1/a S 75011/04.
€ € €

Therefore, in either case, when o > 1/2, (42) is at most

1 1 1
c (16k5a1/%_1 + 128a1/0‘5_1) dLog | — ) +Log | = ] ) Log d Log
3 ) 5 75
o 1 1 1
< 767Ea dLog | — )+ Log | =) | Log 4 Log? [ =),
€ € ) €d €

which is therefore an upper bound on A1y (4,q) (€,9) in this case.

1—2a
Otherwise, if o < 1/2, then ok T=a’ is nondecreasing in k, so that

ke

o(3—k)a/(1-a) ok ke plk-3) 1220 1 ke — 1)ga/2(ke—d 1
Zmln {a }? Z o o< < (ke —1)8a a -
k=2 k=2
S 220 N 2—2a
2 1704 1 _2a 2% 1
< (k. — 1)8d’ ( > = < (ke - 1)8a/2T« (24')' 7 (8> < (k. — 1)32 <‘;>
Ve

= (ke — 1)32(1 — a)*2%(20)**a?c** 2 < (k. — 1)32a%e%* 2,

Therefore, (42) is at most

¢ ((ke — 1)32a%**"% 4 128a%**"?) ( dLog ! + Log ! Log 4 Log i
€ 0 €d e
< 832¢a%¢?* 2 ( dLog E + Log 1 Log 4 Log? 1 .
€ o €6 €

In particular, this implies An(q,q)(€;9) is at most this large when o < 1/2. Furthermore, this
completes the proof of the upper bound for the cases where either « < 1/2, or @« > 1/2 and
5 1
d 2 al/ag®

Next, consider the remaining case that o > 1/2 and § < %‘3‘5 In particular, this requires that
s < 00, and since 5 > d, that ¢ < a1/ In this case, let us take

€ 0

8¢ sLog (
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sLog(Z)+Log(3) _ sLos(i) _ s 5
1 )y —

. . 1
Since s > d, we have dLog(1)+TLog(1) = dlog(1) 2, SO that, since a < ez We have

sLog( 3 )+Los(3) 1
dLog( )+Log(%) allag®
case, Lemma 41 implies that, with any budget n of size at least

22k sLog E + Log ! Log 4 Log ! +
€ 0 €d €
ke k
e max{min {a200/0-0 1} =2 (arop (1) 1 rog( 5 )) Log( % ) os( 2 ).
k=k Te) € o £l Ve

(44)

A bit of algebra reveals that, in this case, k > 2. Therefore, in this

Algorithm 1 produces a classifier f,, with erp,.,, (h,) — erpy,, ( [Py, ) < € with probability at least
1 — 4, and requests a number of labels at most n. This implies Arn(q,q) (€, 9) is at most (44).
Now note that

92k <5L0g <1) + Log (1>>
€ 1
' dL 1 L 1 2—2a
< o (K Lo () Los (DY (1) (1)
8¢ sLog (1) + Log (5) £ 5
2_9q L 1 L 1 2a—1
< 1024a® <1> ° o8 (i) o8 ((i) (dLog <1> + Log <1)> Log? ™2 <1) .
€ dLog (g) + Log (3) € 0 €
Also, since o > 1/2, PARE T nonincreasing in £, so that
Za23 ka/(1—a) 2" <dLog<1>—|—LOg (;))
/
_8a/<: (F=3) 1= (dLog<1>+Log<1>>
€ o
1-2«
! "dL L
§8ak5 k.a' dLog (1) + Log () <dLog <1>—|—Log<1>>
5 8¢ sLog (1) + Log (%) € )
2-2a 1 1)\ 2ot
Log (=) + Log (5
S 256@2 <1> $L.0g (i) + og ((i) <dLOg <1> +L0g <1)> L0g2—20¢ <1> )
€ dLog (E) + Log (3) € ) €
Furthermore, by (43),
e 2 1 1 o (1?72 1 1
— < i — —
CZ <dL0g( >+Log (5)) < 128a (E) (dLog <€)+Log<5>>
2- 9% L 1 L 1 200—1
< 12807 (1) 5 Og(i)—i— Og(i) <dLog <1> + Log <1>)L0g2—2a <1> ‘
£ dLog (1) + Log () £ ) £
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Therefore, since Log <%) < Log (%) < 2Log (%), (44) is at most

2l Gq2 (1>22a sLog(Z) + Log(5) 2a_1<dL <1> +L <1>> L <d> Log? 2 <1>
“@\e dLog(2) + Log(3) e\e e\s e\es ) o8 e)’
45)

The upper bound for the case « > 1/2and § < aTl% then follows by further relaxing this (purely to

simplify the theorem statement), noting that Log?~ 2% (1) < Log? (1),and w <.

Next, we turn to establishing the lower bound. Fix any a € [4,00), a € (0,1), § € (0,1/24],
and € € (O, 1/(24a'/ 0‘)) For this range of values, the recent article of Hanneke (2014) proves a

lower bound of
) 1 2—2« 1
A ) = - d+L -
TN(a,a)(& )NCL <€> ( + Log <5)> )

based on techniques of Kédridinen (2006); Beygelzimer, Dasgupta, and Langford (2009); Hanneke
(2011). It remains only to establish the remaining term in the lower bound for the case when
a > 1/2, via Lemma 26. In the cases that s < 2, this term is implied by the above azz—:?a_QLog (%)
lower bound. For the remainder of the proof, suppose s > 3 and o > 1/2. Let

R N N I

B = %—(%) ,and ¢ = 12 2r@,,no‘[ethatg € (0,1],3€1[0,1/2),and2 < k < min{s—1,[1/¢]};

in particular, the fact that & < |1/(| is established by concavity of the x — %xlf‘x function,

a—1
which equals z at both z = 0 and x = g = (a )e “—; since this function is 1/¢ at x = k, and

0 < k < x, concavity of the function implies 1/{ > k, and integrality of k implies [1/{| > k as
well. Also note that any Pxy € RR(k, ¢, ) has a marginal distribution P such that

P (@ InlasPxy) = 1/21 1/2 = ) = k¢ = ke

—d(1/2- f)TE

1-28

Since every point z in the support of Py, ¢ has either |n(z; Pxy) —1/2| = 1/2— S or |n(z; Pxy) —
1/2| = 1/2, this implies that any v € [1/2 — 3,1/2) has P (x: [n(z; Pxy) — 1/2| <~) =
Pz |n(z;Pxy) —1/2] < 1/2 = B) = a’ (1/2 — B)*/17%) < a/y*/(1=) while any v > 1/2
always has P (z : [n(z; Pxy) — 1/2| <v) = 1 < a/4*/(1=), Furthermore, any v € (0,1/2 — j3)
has P(x : [n(z; Pxy) — 1/2| <) = 0 < a/y*/(1=9) Thus, Pxy € TN(a, @) as well. Since this
holds for every Pxy € RR(k, ¢, 3), this implies RR(k, ¢, 3) € TN(a, ). Therefore, Lemma 26
implies

=a (1/2- )T

ArN(a,0)(€56) = ARR(k,c,8)(€:6) = ArR(k,¢,8)((¢/2)(1 = 28),0)

Blk—1)In(45) o Bk—1) 1
(=T Z(l—w“g(é)' o
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Finally, note that

,B(k— 1) B 1 ke l1—a 1 I\ 2—2a 1 I\ 2—2a .
<1—2ﬁ>2‘<2‘<a'> )4(1%-) =256 (T) e

1 CL, 2—2« CL2 1 2—2«
> 37 <€> (ki o 1)2a—1 > 674 <€> (k? 1)2@—1 (47)

—1

((L’)T =da (a/)—l/a _ a'(l . a)—l/a(2a)_1/(1_a)a,ﬁ

Q

-1/(1-«

< a’(l . a)fl/a(Qa)fl/(lfa)Zl—a(ll,a) —d (41/a(1 . a)(lfa)/a(Qa)) /( ) '
One can easily verify that 4/%(1 — o)(1=®)/%(2a) > 6 for a € (1/2, 1) (with minimum achieved
at a = 3/4), so that o’ (41/%(1 — a)(1=)/a(20)) "/ < gr6=1/(1=a) < g/4=1/(1=a)  Thus,

a—1

W% < %/47&, so that the third term in the definition of k is redundant. Therefore, (47) is at
least

a— 2a—1
2 71\ 22 net 2 71\ 22 1 20—1
i (e minds—2 @ o >3 (Z minds—2 —— —9
€ € € 2al/ag

a2 1 2—2a ‘ 5 1 2a—1 a2 1 2—2a ' 1 2a—1
> — |- ming -, —— > — | - mini< s, ——— .
64 \ e 3’ 3al/ae 192 \ e allee

Plugging this into (46) completes the proof. |

‘
=~

‘
o~

As an aside, we note that it is possible to improve the logarithmic factors in the upper bound

in Theorem 5. One clear refinement comes from using (45) directly (rather than relaxing the fac-
tor depending on 5). We can further reduce the bound by another logarithmic factor when « is
bounded away from 1/2 by noting that the summations of terms ok e in the above proof are
geometric in that case. We also note that, for very large values of a, the bounds (proven below) for
ABE(1/2) (e,9) may be more informative than those derived above.
Proof of Theorem 6 The technique leading to Lemma 41 does not apply to BC(a, ), since we are
not guaranteed f5 € Cfor Pxy € BC(a, o). We therefore base the upper bounds in Theorem 6
directly on existing results in the literature, in combination with Theorem 10. Thus, the proof of
this upper bound does not provide any new insights on improving the design of active learning
algorithms for distributions in BC(a, «). Rather, it merely re-expresses the known results, in terms
of the star number instead of a distribution-dependent complexity measure. The lower bounds are
directly inherited from Theorem 5.

Fix any a € [1,00), a € [0,1], and £, € (0,1). Following the work of Hanneke (2009a,
2011) and Koltchinskii (2010), the recent work of Hanneke and Yang (2012) studies an algorithm
proposed by Hanneke (2012) (a modified variant of the A? algorithm of Balcan, Beygelzimer, and
Langford, 2006, 2009), and shows that there exists a finite universal constant ¢ > 1 such that, for
any Pxy € BC(a, «), for any budget n of size at least

éa? (i)Ha Op, (=) <dLog (Bpy, (a=*)) + Log (Loggl/g)» Log (i) L @)
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the algorithm produces a classifier 4, with erp,, (hyn) — infrec erp,, (h) < e with probability at
least 1 — ¢/4, and requests a number of labels at most n (see also Hanneke, 2009b,a, 2011, 2012,
2014; Koltchinskii, 2010, for similar results for related methods). By Theorem 10, when ac® < 1,
(48) is at most

2—2a
éa? (1) min {5, 1} (dLog (min {5, 1}) + Log <Log(1/5)>> Log (1) , (49)
€ ag® ae® ) €

which is therefore an upper bound on Apc(4,q) (€,0). We can also extend this to the case ag® > 1
as follows. Vapnik and Chervonenkis (1971); Vapnik (1982, 1998) have proven that the sample
complexity of passive learning satisfies

1 1 1
<
MA(;(I)(E,(S) S 3 <dLog <6> + Log ((5>> .

In the case ac® > 1, this is at most
1 2—«
o(2) (mon(2) +10x(5))
€ € )
1\272% 1 1 1
= a2 <> min {5, } <dL0g <> + Log <>>
€ as® € 1)
2—2«
< a? <1> min {5, 1} <dL0g <min {5, 1}) + Log <Log(1/€)>> Log (1> .
€ as® as® 1) €

Therefore, since Aag(1)(€,0) < Mag(€,0) and BC(a,a) € AG(1), we may conclude that,
regardless of whether ac® is greater than or less than 1, we have that Agg(g,q) (€, 6) is bounded by
a value proportional to (49). To match the form of the upper bound stated in Theorem 6, we can

simply relax this, noting that dLog (min {5, aa%}) + Log (%) < 2dLog (%) + Log (%) <
2dLog (%)

Next, turning to the lower bound, recall that TN(a,«) C BC(a, «), so that ArN(a,a) (& 9) <
ABC(G,Q) (e,9) (Mammen and Tsybakov, 1999; Tsybakov, 2004). Thus, the lower bound in Theo-
rem 5 (proven above) for Ap(q,q) (€, 9) also applies to Apcq,a)(€; ). [ |

Proof of Theorem 7 Again, we begin with the upper bound. Fix any v € [0,1/2], ¢, € (0,1),
and Pxy € BE(v). The case v = 0 is already addressed by the upper bound in Theorem 3; we
therefore focus the remainder of the proof on the case of v > 0. For (X,Y’) ~ Pxy, any z € X has
1 =2P(Y # fp,, (X)|X = x) = 27;. Therefore, for any v € [0,1/2), any x € X withy; <y
has P(Y # f5  (X)|X =z) > 1/2 — v. Thus, Markov’s inequality implies

2v
1—-2y
(50)

In particular, this implies that for v < ﬁwa’ YP(x :vp < 7y) < 12_”277 < 12_V€/ /((2;;2)% = 5. Thus,

Ple:7e <7) S Pl PY # fpy, (X)X =2) 2 1/2-9) < Py (Fpxy) <

2
1— 2y

£ y— [ [
Ye 2 532+ We can therefore take 4. = max {Tﬁv 5},
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Also note that any v > 0 has P(z : 9 < ) < 1, so that together with (50), we have
Plx:v, <v) < Mméﬁ Now taking £ = 2, Lemma 41 implies that, with any budget n
of size at least

2v 2k 1 1 d 1

dL L - L — | L —
oy 1) 7 (s (1) r0s 5) o (5) 1o ()
R X on
Algorithm 1 produces a classifier by, with erpy. (hy) — erpy, (fp,.,.) < € with probability at least

1 — 4, and requests a number of labels at most n. This implies Apg,)(€, d) is at most (51). Now
note that

ke 2
Zizs ot 3512(”“) . (52)
5 e € e €
Next, we have
ke k ke k ke
2v 2 28 2 2 28 v ;.
<= _ < — —2
Zl—min{24*k,1—2u} e~ € +Zl—24*’“ e~ € +Z 5
k=2 k=5 k=5
2
§§+4121+k5§§+1%8’/_28 512<V—|—6>
€ € € e €

Therefore, (51) is at most

e (2" 1) (o (1) e (1)) o (4 1o ()
o (=212 s (2) e () e () (229

Next, consider taking k = 5. Lemma 41 implies that, with any budget n of size at least

210z <5Log (1> + Log <1>) Log (d) Log <1)
0 €d €
2 ok 1 1 d 1
+c E max {1_2V4k_7 = } - (dLOg ( > + Log <6>> Log (65) LOg <;y5> y (54)

Algorithm 1 produces a classifier f,, with erp,.,, (h,) — erpy, ( [Py, ) < € with probability at least
1 — 4, and requests a number of labels at most n. This implies Apg(,)(¢,d) is at most (54). As
above, we have

ke k 2
2 2
E 71/73512 vte
1—24-k ¢ €

k=5
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Combined with (52), this implies (54) is at most
210z (5Log <1) + Log (1>> Log ( d > Lo <1>
1) )
et (1) (mon (1) +1am () o (5 ) 10s (1)
0 Ve
o (1) 11
€ €
e (1) (aon (1) 10m (7)o () o (1)
+273¢ dLog + Log Log Log . (55)
1) ) €

In particular, when (sLog (g) + Log (3)) Log (%) < % (dLog (%) + Log (%)) Log (”*E) this is
smaller than (53). Thus, the minimum of these two expressions upper bounds Aggy, )(E J).

To simplify the expression of this bound into the form given in the statement of Theorem 7,
we note that dLog( ) +Log (§) < dLog(1 ), sLog (%) + Log (%) < sLog (%), Log (“££) <
Log (g),(”f) < 4% <4 < + 1) and d < min {5, g}, so that the minimum of (53)
and (55) is at most

2
2123z y——i—l d 4+ min 5,g Log 4 Log 1 Log B
g2 € ) ) €
2
<9836 (“ gt minds, 1) Log (L) Log [ ) Log (2 ).
g2 5 € ed 5

This completes the proof of the upper bound.

Next, we turn to establishing the lower bound. Fix v € [0,1/2), ¢ € (0,(1 — 2v)/24), and
d € (0,1/24]. Based on the works of Kéiridinen (2006); Hanneke (2007a); Beygelzimer, Dasgupta,
and Langford (2009), the recent article of Hanneke (2014) contains the following lower bound (in

the proof of Theorem 4.3 there), letting v = %

st 23| 5 ()| 5 | e ()
> max 2| 1 ' (55)] L?f“ (56)

(8 ) > 1, then 2{ _7 ln(&;)J > IQ_VV In (85) so that (56) implies Apg(,)(€,d) 2
(1). O (g5) < 1, then since RE C BE(v), and |C| > 2 implies
12_7 In (g5 ) Theorem 3 (proven above) implies Apg(,)(€,6) > Arr(e,0) 2 d 2
1;—Q’zLog () in this case as well. If d = 1, these observations further imply Agg,)(c,8) 2 d1;32.
On the other hand, if d > 2, and if 11;;*; > 1 Ll_'yj J > 488 172 , so that (56) implies
Apg) (2,6) 2 dA53.

17y
still have Aggy,) (e, 5) > Arg(e, 5) > d > d1

—~2 1 —
Apgr()(e,0) 2 ! 727 maX{d, Log <5>} 2 ! " 7 <d+L0g (;)) : (57)
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When v > 12¢, v < 1/2, so that (57) implies

1 1 v+12e) 2 1 2 1
> - ) ) = ) > 2 2
ABE(U)(E,é) R <d+L0g <5>) ( 1% ) <d+Log <5>> R 3 <d+Log <5>>

Otherwise, if v < 12¢, then

1—72 (1-v1+7) (v+12 2 v v+ 24e SV v v
¥2 2 _< 12¢ ) <V+128> <V—|—125>1/+12512514M€2'
(58)
Therefore, if v < 12¢, (57) implies that Agg,)(€,0) 2 ’;—; (d + Log (%)) in this case as well. It
remains only to establish the final term in the lower bound. For this, we simply note that RE C
BE(v), so that Theorem 3 implies Apg(,)(e,0) > Arg(e,6) 2 min {s, 11, Combining these
results implies

v? 1 1 v? 1 1
> — - i - > — i Z
Agg)(g,0) 2 max{ 2 <d+Log<6>> ,mln{ﬁ, 5}} R 3 <d+ Log<5>> +mm{5, e} .

Examining the proof of the lower bound for Agg,) (e,9), we note that this argument also es-
tablishes a slightly stronger lower bound in the case ¢ > v. Specifically, if we use the expression
just left of the right-most inequality in (58), rather than the right-most expression, we find that we
can add a term ZLog (%) to the stated lower bound. This term can be larger than the stated term
Z—;Log (3) when & > v. Additionally, since RE C BE(v), we can of course also add a term d to
the stated lower bound, which again would increase the bound when € > v.

Proof of Theorem 8 Again, we begin with the upper bounds. As with the proof of Theorem 6, we
cannot use the technique leading to Lemma 41; we turn instead to a simple combination of an upper
bound from the literature, combined with Theorem 10.

Fix any v € [0,1] and ¢,6 € (0,1). Following the work of Hanneke (2007b); Dasgupta, Hsu,
and Monteleoni (2007); Koltchinskii (2010), the recent work of Hanneke (2014) studies a modified
variant of the A? algorithm of Balcan, Beygelzimer, and Langford (2006, 2009), showing that there
exists a finite universal constant ¢ > 1 such that, for any Pxy € AG(v), for any budget n of size at

least
Opy, (v +2) (Zi + Log (i)) <dLog (Opyy (v 1)) + Log (L"ggl/g)» (59

the algorithm produces a classifier h,, with erp,. (h,) — infrec erpy., (h) < & with probability at
least 1 — 9, and requests a number of labels at most n (see also Dasgupta, Hsu, and Monteleoni,
2007; Beygelzimer, Dasgupta, and Langford, 2009, for similar results for related methods). By

Theorem 10,
2
} < 2min{5, ! },
+ée V+e

while Log (0p,, (v +¢)) < Log (min {5, %ﬁ} Y 1) = Log (min {5, V%rg}) Therefore, (59) is
at most

s o, LV (2t (1)) (i i 1) 1 o (250090
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which is therefore an upper bound on Axq () (¢, 6). To match the form of the upper bound stated in
Theorem 8, we can relax this by noting that dLog (min {5 L }) +Log (%) < 2dLog (1)

P vte
+Log (}) < 2dLog (&), while % + Log () < (% + 1) Log (1),
To prove the lower bound in Theorem 8, we note that BE(r) C AG(v) for v € [0,1/2), so that

Apgw)(€,6) < Aac()(&,6). Thus, the lower bound on Aggy,) (&, d) in Theorem 7 (proven above)
also applies to Apyq(y)(€,0). |

Appendix C. Proofs for Results in Section 7

This section provides proofs of the equivalences between complexity measures stated in Section 7.

C.1 The Disagreement Coefficient

Here we present the proof of Theorem 10. First, we have a helpful lemma, which allows us to
restrict focus to finitely discrete probability measures. Let II denote the set of probability measures
P on X such that 3m € N and a sequence {z;}*, in X’ for which P({z; : ¢ € {1,...,m}}) = 1.

Lemma 42 [fs < oo, then Ve € (0, 1], 5(5) = SUppcyy SUPhec On,p(€).

Proof Suppose s < oo, and fix any € € (0, 1]. Since Pxy ranges over all probability measures

over X x Y in the definition of é(e), including all those in RE with marginal P over X contained in

IT (in which case, Op, (€) = O p(€)), we always have sup pery suppec On,p(€) < 0(¢). Thus,
XY

it suffices to show that we also have suppcry supyec On,p () > é(a)

The result trivially holds if 5(5) = 1, since every P and h have 0, p(¢) > 1. To address the

nontrivial case, suppose 8(g) > 1. Fix any v1,v2,73 € (0,1). Fix any Pxy with Opyy (e) > 1,

and as usual denote P(-) = Pxy (- x V). Also let by, be as in Definition 9, so that Op,, (¢) =
P(DIS(Bp (h

Py oTe)))
Qh;,xy,p(é‘). Letr. € (57 1] be such that TEPXY > (

the definition of the supremum, combined with the fact that 1 < 6p,, (¢) < 1/e < c0). Also let
h € Chave P(z : h(z) # hp (z)) < v37e, which exists by the definition of A .

Let m = [#‘1@ <1OdL0g (7§i3> + Log(24)>—‘, which is a finite natural number, since d <
s < oo. It follows from Lemma 20 and Lemma 18 that, for X7, ..., X/, independent P-distributed
random variables, with probability at least 2/3, every g € C has L "7, Ipisg({h,gn (Xi) < Pz
h(z) # g(z)) + yore < Pz & hp  (z) # g(x)) + (93 + y2)7=. Furthermore, by Hoeffd-
ing’s inequality, we also have that with probability at least 2/3, % > HDIS(BP(h%xy”E)) (X)) >

P(DIS(Bp(hp,, :7e))) — Y2re. By a union bound, both of these events happen with probabil-

1 —)6py, (¢) (Which exists, by

ity at least 1/3. In particular, this implies 3z1,...,2, € X such that, letting P be the proba-
bility measure with P(A) = % 1 14(%y) for all measurable A C X, we have, Vg € C,
P(DIS({h, g})) < P(DIS({hp,.,,9}))+ (V3 +72)re, and furthermore P(DIS(Bp (hp, ., 7c))) >
P(DIS(Bp(hp,, 7)) —Y2re. This further implies that Bp(hp ., 7:) € Ba(h, (1 +73+92)7:),
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and thus

~

P(DIS(Bp(h, (1473 +12)re))) = P(DIS(Bp(hp,., 7<) = PDIS(Bp(hp, ., ,7:))) — 7are
> (1 - 71)973)(}/ (5)T5 — V2Te > (1 - 71— 72)973)(}/ (5)7"5.
Therefore,
PDISBs(h, (L +73+72)7e)) _ 1—~1 — 7o
0 () > P > 0 )
nple) 2 (1473 +72)r= ST

Noting that P({z1,...,2zm}) = 1, so that P € II, since Pxy was arbitrary, we have established
that VPxy, 3P € Il and h € C such that 6, p(c) > ;1;3; 0p, (¢). Since this holds for
any choices of v1,72,7v3 € (0, 1), taking the limits as v; — 0, 73 — 0, and 72 — 0, we have

SUP per1 SUPhec On, p(€) > é(s) [ ]

In fact, it is easy to show (based on the first part of the proof below) that the “s < 0o constraint

is unnecessary in Lemma 42, though this is not important for our purposes. We are now ready for
the proof of Theorem 10.
Proof of Theorem 10 First, we prove 5(5) > s A 1. Toward this end, let {z;}5_; and {h;}5_, be
as in Definition 2, and let n = s A [1]. Let P be a probability measure on X’ with P({z;}) = 1/m
for each i € {1,...,m}. In particular, this implies that every ¢ € {1,...,m} has P(x : h;(x) #
ho(x)) = 1/m, so that h; € Bp(hg,1/m). Since clearly hy € Bp(ho,1/m) as well, and every
i € {1,...,m} has z; € DIS({hi, ho}), every > 1/m has P(DIS(Bp(ho,7))) = P({z; : i €
{1,...,m}}) = 1. Therefore, letting Pxy be the distribution in RE with f5 = ho and marginal
P over X,

P(DIS(Bp(ho, max{1/m,e})))
max{1l/m,¢e}

0(e) > Opyy (€) = Oy p(c) >

! A ! LA !
= ="M -_—= —.
max{1/m,¢e} € €

Next, we prove that é(e) < sAL That é(a) < 1 follows directly from the definition, and the fact

P(DIS(Bp (h,r 1 1
DIEe()) < gy 11

that probabilities are at most 1: that is, any P and h have sup,.-. -

Therefore, it remains only to show that é(s) < s whens < % Furthermore, Lemma 42 implies

that it suffices to show that suppcp supy,ec 0np(¢) < s in this case. Toward this end, suppose
5 < % We first stratify the set II based on the size of the support, defining, for each m € N,
I, ={Pell:3z,...,2m € Xs.t. P({21,...,2m}) = 1}. Thus, II,, is the set of probability
measures on X’ for which the support of the probability mass function has cardinality at most m.

We now proceed by induction on m. As a base case, fix any m < s, any classifier h, and
any P € Il,,, and let 21, ..., 2, € X be such that P({z1,...,2mn}) = 1. Forany r € [1/s, 1],
P(DIS(Bp(h,r)))/r < 1/r < s. Furthermore (following an argument of Hanneke, 2014), for any
r € (g,1/s), for any g € C with P(z : g(x) # h(z)) < r, every z € X with P({z}) > r has
Pz : g(x) # h(z)) < P({z}), so that g(z) = h(z); thus, z ¢ DIS(Bp(h,r)). We therefore
have that P(DIS(Bp(h,r))) < P(z : P({z}) < r) =>" L[P({z}) <r]P({z}) < rl{i €
{1,...,m} : P({z:}) < r}|. Therefore, ZPEBetr)) < 165 ¢ (1. m} : P({z}) < r}| <
m < s, so that (since s > 1, due to the assumption that |C| > 2), we have 0}, p(e) < s.
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Now take as an inductive hypothesis that, for some m € N with m > s, we have

sup supbpp(e) <s.
PGHm—1 hE(C

Fixany h € C,r > ¢, and P € II,,,, and let z1,. .., z,, € X be such that P({z1,...,2m}) = 1.
If 3i,j € {1,...,m} with ¢ # j and z; = z;, orif some j € {1,...,m} has P({z;}) = 0, then
since either of these has P({z; : k € {1,...,m} \ {j}}) = 1, we would also have P € II,;,_1, so
that 0, p(¢) < s by the inductive hypothesis. To handle the remaining nontrivial cases, suppose the

21, ...,z are all distinct, and min;eqq .y P({2:}) > 0. Furthermore, note that, since m > s,
{#1,...,2m} cannot be a star set for C.
We now consider three cases. First, consider the case that 3k € {1,...,m} with 2z, ¢

DIS(Bp(h,r)). In this case, define a probability measure P’ over X’ such that, for any measur-
able A C X\ {z}, P'(A) = P (AU {z}) = P(A)/(1 — P({zk})). Note that this is a well-
defined probability measure, since m > 2 and min;cy .y P({2i}) > 0, so that P(X \ {z}) =
1 —P({z}) > 0. Also note that (since h € Bp(h,r)) any g € Bp(h,r) has g(zr) = h(zx), so
that P'(x : g(x) # h(x)) = P(z : g(z) # h(x))/(1 — P({z})) < r/(1 — P({z})). Therefore,
Bp/(h,r/(1 — P({2,}))) 2 Bp(h,r), and since z; ¢ DIS(Bp(h,7)), P'(DIS(Bp:(h,r/(1 —
P({z})))) = P'(DIS(Bp(h, 1)) = PDIS(Bp(h, r)))/(1 — P({z}). Thus,

PDISBp(h,7))) < (1= P({z})P'(DISBpr (h,1/(1 = P({2:})))))- (60)

Noting that P'({z; : i € {1,...,m}\{k}}) = P({z1, -, 2m}\{2x})/(1=P({z})) = 1, we have
that P’ € 11,,,_1. Therefore, by the inductive hypothesis and the fact that 7 /(1 —P({zx})) > r > &,

P (015 (B (=i ) ) ) < Oy

< sup supOpple)——0 <"
u u / .
= pennwee PEITTPa) T 11— P{a))

Combined with (60), this further implies that P(DIS(Bp(h,7))) < (1-P({zx}))sr/(1—P({zx}))
=67,

Next, consider a second case, where {z1,...,2,} C DIS(Bp(h,r)), and 35,k € {1,...,m}
with j # k such that, Vg € Bp(h,r), g(zr) # h(zk) = g(2;) # h(z;). In this case, define a
probability measure P’ over X such that, for any measurable A C X \ {z;, 2z}, P'(4) = P(A),
P(AU{z}) = P(A), and P'(AU {z}) = P(AU{zj,z}) = P(AU {zj,2}): in other
words, P’ has a probability mass function z — P’({z}) equal to = — P({x}) everywhere, except
that P'({z;}) = 0 and P'({z}) = P({z;}) + P({zx}). Note that, for any g € Bp(h,r) with
9(z1) = h(zx), P'(x : g(x) # hix) = Pz : g(x) £ hiw)) — 1lg(z) # h(z)|P{z}) < Pla
g(z) # h(x)) < r. Furthermore, any g € Bp(h,r) with g(zx) # h(zx) also has g(z;) # h(z;),
so that P'(z : g(z) # h(z)) = P(x : g(x) # h(z)) < r. Therefore, Bp/(h,7) 2 Bp(h,r).
Since z;, 2z, € DIS(Bp(h,r)), this further implies that z;, z, € DIS(Bp/(h,r)). Therefore, by
definition of P’ and monotonicity of measures, P’ (DIS(Bp/(h,r))) = P(DIS(Bp/(h,7))) >
P(DIS(Bp(h,r))). Noting that P'({z; : i € {1,...,m} \ {j}) = P({z1,...,2m}) = 1, we
have P’ € II,,—1, and therefore (by the inductive hypothesis), P'(DIS(Bp/(h,r))) < 05 p(e)r <
SUPpert,, _, SUPwec O, p(e)r < sr. Thus, since we established above that P(DIS(Bp(h,7))) <
P’ (DIS(Bp:(h,r))), we have that P(DIS(Bp(h,r))) < sr.
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Finally, consider a third case (the complement of the first and second), in which {z1,..., 2y} C
DIS(Bp(h, 7)), but #j,k € {1,...,m} with j # k such that, Vg € Bp(h,7), g(z) # h(z) =
9(2;) # h(z;). In particular, note that the first condition (which is, in fact, redundant, but included
for clarity) implies P(DIS(Bp(h,r))) = 1. In this case, since (as above) {z1,..., 2y} is not a
star set for C, 3i € {1,...,m} such that Vg € C with g(z;) # h(z;), 37 € {1,...,m} \ {i}
with g(z;j) # h(z;) as well; fix any such ¢ € {1,...,m}. Since {z1,..., 2} C DIS(Bp(h,r)),
we have z; € DIS(Bp(h,r)). Thus, we may let g; € Bp(h,r) be such that g;(z;) # h(z;), and
let j € {1,...,m} \ {¢} be such that g;(z;) # h(z;) (which exists, by our choice of 7). Let P’
be a probability measure over X’ such that, for all measurable A C X'\ {z;,2;}, P'(A) = P(A),
P'(AU{z}) = P(A), and P'(AU{z;}) = P'(AU{zi,2;}) = P(AU{z, z;}): in other words,
P’ has a probability mass function z — P’({z}) equal to x — P({z}) everywhere, except that
P'({zi}) = 0and P'({z;}) = P({zi}) + P({z;}). Note that, for any measurable set A C X with
{zi,2;} € A, P'(A) = P(A). In particular, since {z;,z;} C DIS({g;, h}), P'(DIS({gi, h})) =
P(DIS({gs, h})) < r,sothat g; € Bp/(h, ), and therefore (since h € Bp/(h,7) as well) {z;, z;} C
DIS(Bp/(h,r)). Furthermore, for any k € {1,...,m} \ {7, 7}, by the property characterizing this
third case, and since z;, € DIS(Bp(h,r)), 3g € Bp(h,r) with g(2;) # h(2;) and g(z;) = h(z;),
so that P'(DIS({g, h})) = P(DIS({g,h}) \ {z:}) < P(DIS({g,h})) < r (ie., g € Bp:/(h,r)),
and therefore (since h € Bp/(h,r) as well) z € DIS(Bp/(h,r)) as well. Altogether, we have
that {z1,...,2m} C DIS(Bp/(h,r)). Therefore, since {z;,2;} C DIS(Bp/(h,r)), the defi-
nition of P’ implies P'(DIS(Bp/(h,r))) = P(DIS(Bp/(h,7))) > P{z1,...,2m}) = 1 =
P(DIS(Bp(h,r))). Noting that P’ ({zx : k € {1,...,m}\{i}}) = P({z1,...,2m}) = 1, we have
that P’ € II,,,—1, and therefore (by the inductive hypothesis), P'(DIS(Bp:(h,r))) < O pr(e)r <
SUpPpery,,_, SUPwec O p(e)r < sr. Since P/(DIS(Bp/(h,7))) = 1 = P(DIS(Bp(h,r))), we
have that P(DIS(Bp(h,7))) < sr as well.

Thus, in all three cases, we have that P(DIS(Bp(h,))) < sr. Since this holds for every r > ¢,
and |[C| > 2 implies s > 1, we have that 6;, p(¢) < s. Since this holds for every h € C and
P € Il,,,, we have established that suppcr;  suppec On,p(e) < 8, which completes the inductive
step. It follows by the principle of induction that suppey;  suppec On,p(e) < s for every m € N,
and therefore, since IT = |, , I1,,,, suppe suppec Onp(e) < s.

The claim that 5(0) = s follows as a limiting case, due to continuity of the supremum from
below. Specifically, fix any sequence {A,}°; of nonempty subsets of R. For each m € N,
U, An 2 Ap, sosuplJ,, A, > sup A, (allowing the supremum to take the value co where ap-
propriate), and since this holds for every such m, we have sup Un A, > sup,, sup A,, Furthermore,
Va € U, An, 3m € Nsit. a € Ay, so that sup, sup A, > sup A,, > a, and therefore (since
this holds for every such a) sup, sup A, > suplJ,, An. Thus, suplJ,, A, = sup, sup 4,. In
particular, taking (for each n € N)

o {P(DIS(Bp(h;‘jxy,r)))

r

V1:r>1/n,Pxy € AG(I)},

(where, as usual, P(-) = Pxy(- x )) denotes the marginal of Pxy over X’), and noting that
supU,, An = 6(0) and Vn € N, supA, = 6(1/n), we have that (0) = sup, 6(1/n) =
sup, s An =s. |
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C.2 The Splitting Index

Here we present the proof of Theorem 12. First, we introduce a quantity related to p(), but slightly
simpler. For e, 7 € (0, 1] and any probability measure P over X, define

pp(e;7) =sup{p € [0,1] : Cis (p, e, 7)-splittable under P},

and let
p(e) = inf lim pp(e; 7).

P 70

In the arguments below, we will see that [1/p(¢)| = |1/p(e)], so that it suffices to work with this
simpler quantity. We begin with a lemma which allows us to restrict our focus (in part of the proof)
to finitely discrete probability measures. Recall the definition of IT from Appendix C.1 above.

Lemma 43 [f d < oo, then Ve € (0,1], p(e) > lim inf lim ,op((l —y)e; 7).
v—0 Pell 7—0

Proof Suppose d < oo, and fix any ¢ € (0, 1]. Fix arbitrary values v1,v2 € (0, 1), and let

m = {7285 <10dLog <fy§ ) +Log(24))1

which is a finite natural number. Fix any probability measure P over X, and any 7 € (0,1/(3m)),
and note that 7 — pp(e;7’) is nonincreasing, so that pp(e;7) < lim, g pp(e;7’). For brevity,
denote p = pp(e; 7). Since C is not (1 + p, €, 7)-splittable under P, let Q C {{f,g} CC: P(x
f(z) # g(x)) > e} be a finite set such that P(x : Split(Q,z) > (1 + p) |Q|) < 7.

Let X1,..., X/, be independent P-distributed random variables. Lemma 20 and Lemma 18
imply that, with probability at least 2/3, Vf, g € C,

m

Pl f(@) # g(x)) — — S L[FX]) # 9(X))]

=1

< Y2€.

Furthermore, by a union bound, with probability at least 1 —mP(z : Split(Q, ) > (v + p) |Q]) >
1—mr >1-m(1/(3m)) = 2/3,every i € {1,...,m} has Split(Q, X;) < (71 + p)|Q|. By a
union bound, both of the above events occur with probability at least 1 / 3. In particular, this implies
321, ..., Zm € X such that, letting P be the probability measure with 73( ) =L 3" La(zm) for

all measurable A C X, we have, Vf,g € C, |P(z : f(z) # g(z)) — P(z : f(x) # g(x ))‘ < 2e,

and P(x : Split(Q, x) > (1 + p)|Q]) = 0.
For any {/.9) € Q. we have Pls : f(z) # 9(x)) > P(x : f(2) # gla)) — e > (1 -
v2)e. Therefore, C is not (y1 + p, (1 — y2)e, T’)—Sp}ittable under P for any 7/ > 0, which implies

limy/ 0 pp((1 — 72)g; 7') < 71 + pp(e; 7). Since P € I, we have
inf lim pp((1—72)e; ™) <y +pp(Es7) <+ lim pp(e; 7).
Pell 7/—0 70

Since this holds for any v; € (0, 1), taking the limit as y; — 0 implies

— < lim pp(e; ).
jnf lim pp((1—92)e;7') < lim pp(e;7)
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Furthermore, since this holds for any v2 € (0, 1) and any P, we have

1 f1 1-— <inf lim pp(e;7’) = p(e).
W213101;}611%1310pp(( Y2)e7) < in lim pp(e;7) = ple)

We are now ready for the proof of Theorem 12.
Proof of Theorem 12 We first establish that s A | 1] < LﬁJ for any ¢ € (0,1]. The proof of

this fact was implicitly established in the original work of Dasgupta (2005, Corollary 3), but we
include the argument here for completeness. Let {z;};_; and {h;};_ be as in Definition 2, and let
m=56A EJ Let A = 1/m, and note that A > 1/ EJ > e. As in the proof of Theorem 10,
let P be a probability measure on X’ with P({z;}) = 1/m for each i € {1,...,m}. Thus, every
i€ {l,...,m} has P(z : hj(x) # ho(z)) = A, so that h; € Bp(hg,A) C Bp(hg,4A), and
the finite set Q = {{ho,hi} : i € {1,...,m}} satisfies @ C {{f, g9} C Bp(ho,44A) : P(zx :
f(x) # g(x)) > A}. In particular, since P(X \ {z1,... xm}) = 0,and every i € {1,..., }
has Split(Q, z;) = 1 = L|Q|, we have P (z : Split(Q,z) > L|Q|) = 0. Thus, for any p >

and any 7 > 0, Bp(ho,4A) is not (p, A, 7)-splittable. Therefore p(e) <lims_y0 ppop(e;7) <

S\HS\H

which implies L > m; since m € N, it follows that LLJ > m.
A(e) p(e)
Next, we prove that L%J < s A |1] forany ¢ € (0,1]. Since, for every h € C, every
probability measure P over X, and every A > ¢, every finite Q C {{f,g9} C Bp(h,4A) : P(x

f(x) # g(x)) > A} alsohas Q C {{f,g} S C:P(z: f(z) # g(x)) > e}, we have p(e) < p(e).
Thus, it suffices to show {%J <sA L%J

That p(¢) > e was established by Dasgupta (2005, Lemma 1); we repeat the argument here
for completeness. Fix any probability measure P over X and any ¢,7 € (0, 1] with 7 < e. Fix
any finite set Q@ C {{f, g} C C: P(x : f(x) # g(x)) > e}. If Q = 0, then trivially P(z
Split(Q, x) > ¢|Q|) = 1 > 7. Otherwise, if Q # 0, letting X ~ P,

ElSplit(Q, X)| > E | Y 1f(2)#9(Z)]| = > Pla:flx)#g(@) > Q.
{f.9}eQ {f.9}eQ

Furthermore, since Split(Q, z) < |Q|,

[Split(Q X
E[1Split(Q, X) = (e — 7)|QIISplit(Q, X)] + E[1[Split(Q, X) < (¢ — 7)|Q[ISplit(Q, X)]
<7’($ Split(Q, z) = (e — 7)|Q]) Q] + (¢ — 7)|Q).

Together, these inequalities imply

Qle <P (x: Split(Q, ) > (¢ = 7)|Q)) [Q] + (¢ = 7)|Q-

Subtracting (¢ — 7)|@| from both sides and dividing by |Q)|, we have
T <P (x:Split(Q, x) = (¢ — 7)|Q) -
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Since this holds for any such @), we have that C is ((¢ — 7),¢&, 7)-splittable under P, so that
pp(e;T) > e — 7. Since this holds for every choice of P, we have that

(e} — it B Bole ) >l e — 7 —
ple) = nf lim pp(e;7) 2 lime —7 =,

C . . 1 1
from which it immediately follows that L@J < |%].

It remains only to show that [%J < s. In particular, since this trivially holds when s = oo, for
the remainder of the proof we suppose s < oco. As argued in Section 4, we have d < s, so that this
also implies d < oo. Thus, Lemma 43 implies that p(e) > lim.,_,¢ infper lim, 0 pp((1 —7)e; 7).
Therefore, if we can establish that, for every ¢ € (0,1] and P € II, lim,_,o pp(e;7) > 1/s, then
we would have that for every ¢ € (0, 1],

1 . 1
— | < — < lim su <s,

1
()] = pE) ~ =0 pen im0 pp((L— )& 7)

which would thereby complete the proof.

Toward this end, fix any ¢ € (0, 1], and for each P € II, denote 7p = min{P({z}) : = €
X,P({zx}) > 0}; in particular, note that (since P € II) 0 < 7p < 1, and therefore also that, Ve €
(0,1], lim, 0 pp(e;7) > pp(e;Tp) (in fact, they are equal). Furthermore, denoting supp(P) =
{zr € X : P({z}) > 0}, every = € supp(P) has P({x}) > 7p, while P(X \ supp(P)) = 0.
Thus, for any finite @ C {{f,9} € C: P(zx : f(x) # g(z)) > €}, and any p € [0,1], P(x :
Split(Q, z) > p|Q|) > 7p if and only if max,cepppy SPLt(Q, ) > p|Q|. Furthermore, since
P(X \ supp(P)) = 0, for any ¢ € (0,1], every {f,g} C C with P(z : f(x) # g(x)) > & must
have DIS({f, g}) Nsupp(P) # 0. Thus, defining

pr =sup { € 0.1 ¥ iite Q € {{7,9) € C: DIS({f.)) Nsupp(P) # 0}

max Split(Q,z) > p|@\},
zesupp(P)

we have pp < pp(e;7p) for all e € (0, 1] (in fact, they are equal for ¢ < 7p). Thus, it suffices

to show that infpery pp > 1/5. Now partition the set IT by the sizes of the supports, defining, for

eachm € N, II,,, = {P € Il : |[supp(P)| = m} (this is slightly different from the definition used

in the proof of Theorem 10). Note that, for any P € 1, the value of pp is entirely determined by

supp(P). Thus, defining, Vm € N with m < |X|,

pm = XmQ/\j:I\IPffmhmsup {p € 10,1] : Vfinite @ C {{f,g} C C: DIS({f, g}) N X, # 0},

1 >
52%2 Split(Q, =) > P|Q‘}a

infpen pp = infenam<| ) infpen, pp > infenm<|x| Pm- Therefore, it suffices to show that
Pm > 1/s for all m € N with m < |X|.

We proceed by induction on m € N with m < |X|, combined with a nested inductive argument
on (). As base cases (for induction on m), consider any m < s. Fix any X,,, C X with |X,,,| = m

we have infper,, pp > pm (in fact, they are equal). Thus, since II = |J,,cp IIm, we have
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< < < immediately follows from Definition 2). Also
fix any finite set Q C {{f,g} € C : DIS({f,g}) N X, # 0}. Since V{f,g} € Q, Iz € A,
such that f(z) # g(z), the pigeonhole principle implies Iz € X, with [{{f,¢9} € Q : f(x) #
9(@)} > 1Q1/|Xom]| = |Q1/m. For this z, we have Split(Q, z) > |{{f,9} € Q : f(x) # g(x)}| >
(1/m)|Q| > (1/s)|Q)|. Since this holds for any such choice of @) and X,,,, we have that p,, > 1/s.

If |X| = s, this completes the proof. Otherwise, take as an inductive hypothesis that, for some
m € Nwiths < m < |X|, pm—1 > 1/s. Fix any &,, C X with |X,,,| = m. We now introduce a
nested inductive argument on () (based on the partial ordering induced by the subset relation). As a
base case, if ) = (), then trivially max,ex,, Split(Q, z) = 0 = (1/5)|Q|. Now take as a nested in-
ductive hypothesis that, for some nonempty finite set Q@ C {{f, g} C C: DIS({f,g}) N X, # 0},
for every strict subset R C @), max,cx,, Split(R, z) > (1/s)|R).

First, consider the case in which 3z € Xy, such that © ¢ ;s 1co DIS({f, g}). In this case,
every (1,9} € Qs DI} (% {a}) = DI 1)y # 050010 € {119} €
C:DIS{f,g}) N (X \ {x}) # 0}. Therefore, since |X;,, \ {x}| = m — 1, by definition of p,_1
we have max,cy,, Split(Q,z') > maxycx, \ (2 SPLt(Q, z) > ﬁm_l\Ql. Combined with the
inductive hypothesis (for m), this implies max, ¢, Split(Q, z') > (1/)|Q].

Now consider the remaining case, in which Vx € X, 3{fz, 9.} € Q with z € DIS({ fz, 92 }).
Since { fz, g} ¢ QY% foreveryy € Y and x € X,,, we have max,cy,, Split(Q, z) > 1. We proceed
by a kind of set-covering argument, as follows. For each = € X, denote y, = argmax,c |Q%|
(breaking ties arbitrarily), and denote S, = {2’ € Xy, : {fs, 92} ¢ Q%' }. Let 2 be any element
of X,,. Then, for integers ¢ > 2, inductively define z; as any element of X, \ U’ ! Sz,
until the smallest index ¢ € N for which A, \ U =19z = = (); denote by I this smallest 4 w1th

X \ Uj’:1 S,, = 0. Note that, since {f;, 9.} ¢ Q% (and hence x € S,) for each x € X,,,, every
z; is distinct, which further implies that I < m (and in particular, that I exists). Furthermore, since
any i € {1,...,I} and z € X, with {f3, 9} = {f2, 9.} have S; = S;,, and therefore z € S,
3j > i with z; = x. Thus, we also have that { f-,, g., } # {fz5 9z} foreveryi,j € {1,...,I} with
i .

Now let ¢y = I, and for integers k > 2, inductively define

i—1 k—1
iy =max i€ {l. . i1 =1} [ S\ U S |\ U S, #0 ¢,

=1 j=1

up to the smallest index k € N with {z e{l,... i —1}: (Szl \ Ul ! Sz7> \U§:1 Sa, # @} =
(); denote by K this final value of k (which must exist, since 751 € N is defined and strictly smaller
than 45, for any k for which this set is nonempty; in particular, 1 < K < I). Finally, let 1 = z;,,
and for each k € {1,..., K}, let ) denote any element of (Szl \ U““ 's ) \ Uk ! Sz;,» which
is nonempty by definition of 4.

We first establish, by induction, that | J;-_, Sz, = Xm. By construction, we have UL, s., =
Xm. Furthermore, for any i € {1,... 1}, if U;<; Sz U Ui<k< iy >it1 Sz, = &m. then either
i € {i1,...,ix} inwhich case U, ; Sz UU << i >i 2, = Uj<i Sz WU <<k i1 Sz, =
Xm,orelsei ¢ {i1,...,ix}, which (by definition of the iy sequence) implies S, C UZ ! S
Ui<k<rip>it1 Sz » SO that Ujei 8% UlUi<k<rigi Sz, = Ujci Sz U U1§k§K.Zkzz+1 5 2, —
Ujg S, U UlgkgK:ikziH Sz, = Xm. By induction, we have that Ule Sz, = Uj<1 S, U

C
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Ui<k<riip>1 5%, = Xm. In other words, Vz € X, 3k(z) € {1,..., K} with {fzim)’gzim)} ¢
Qi

In particular, letting R = Q \ {{f>, .9, } + k¥ € {1,...,K}}, we have that Vo € X,
{foi0) 92000y T € (Q\R) N (QE \ R) while Q2" \ R C Q\ R, so that |Q \ R| — Q" \ R| > 1.
Therefore, Vz € X,

Split(R, ) = [R| — maX\Ry\<|R| [Ry| = |R[ - [RN QY|

= (1QI = 1Q\ R]) — (lQF*[ - [Q¥ \ R]) = (IQ] - Q) — (\Q\R! —|Qi \ R)
<1QI— Qx| -1 =Qf — max|Qz] — 1 = Split(Q, z) - (61)

Since K > 1, we may note that R is a strict subset of (), so that the (nested) inductive hypothesis
implies that max,¢x,, Split(R, z) > (1/s)|R|. Combined with (61), this implies

max Split(Q, x) > max Split(R,z) + 1 > (1/s)|R| + 1. (62)
QGXm .TGXm
Next, we argue that K < s, by proving that {z1,...,zx} is a star set for C. By definition of

Z[, we have z;1 € X, \ UI -1 S, € A \UK SZZ Furthermore, z; € S;,, so that z; € S, \
9 Sz, - Since z1 = z;, = z1, we have 21 € S, \ UK 5 Sz, - Also, foreach k € {2,..., K},

by defnton, (82, \UES' S5, \u’“ 1S (szl,g VU et 8, )\ UBEL S = S5\
Ui<j<kcjzk S= =i, - Therefore, every k € {1,. K} has ), € Sz, \UISJSK:J#k Sz, - In partlcular,

forevery k € {1,..., K}, sincexy € S, ,wehave {f, ,g:, } ¢ Qirk, so that Ihy, € {fa,0 92,
with hy(z) # ya,. Furthermore, for every j € {1,..., K} \ {k}, since z; ¢ S, , we have
{fzz-k , 9zz~k} € ngj, so that fzz'k (x) = Gz, (75) = Y, and in particular, hy(z;) = yz;. Also, since
we have chosen 71 = z;,, so thatzy € DIS({fz, , 92, }), Fho € {f2,,, 9z, } With ho(21) # hi(z1):
that is, ho(21) = Yz, Thus, since f;, (2;) = gz, (7;) = ya, forevery j € {2,..., K}, we have
that ho(xg) = yg, forevery k € {1,..., K}. Altogether, we have that every k € {1,..., K}
has hy(x) # ho(xk), while every j € {1,..., K} \ {k} has hy(x;) = ho(x;). In other words,
Vk e {1,..., K}, DIS({ho, hx}) N{x1,..., o} = {xx}: thatis, {x1,...,zx} is a star set for C,
witnessed by {hg, h1,. .., hx}. In particular, this implies K < s.

Therefore, since |Q \ R| = K (by distinctness of the pairs { f.,, g., } argued above), (62) implies

max Split(Q, z) > (1/5)| R + g = (1/s)(IR[ +|Q\ R[) = (1/5)[Q].

By the principle of induction (on @), we have max,¢cx,, Split(Q, z) > (1/s5)|Q)| for every finite set
Q C{{f,9} CC:DIS{f,g})NX, # 0}. Since this holds for any choice of X,,, with |X,,,| = m
we have p,, > 1/s. By the principle of induction (on m), we have established that p,, > 1/s for
every m € N with m < |X|, which completes the proof of the theorem. |

C.3 The Teaching Dimension

Here we give the proofs of results from Section 7.3. We first prove that every minimal specifying
set is a star set (Lemma 14). In fact, we establish a slightly stronger claim here (which also applies
to local minima), stated formally as follows.

87



HANNEKE AND YANG

Lemma 44 Fixany h : X — Y, m € N, U € X™, and any specifying set S for h on U with respect
to ClU]. IfVz € S, S\ {z} is not a specifying set for h on U with respect to C[U|, then S is a star
set for CU {h} centered at h.

Proof Fix an arbitrary sequence U = {z1,...,2pn} € X™ andany h : X — Y. Lett >
TD(h, ClU],U), and let iy, ...,3 € {1,...,m} besuchthat S = {z;,,...,x; } is a specifying set
for h on U with respect to C[U{]. First note that, if 35 € {1,...,t} such that every g € VS\{xij},h
has g(z;;) = h(z;;) (which includes the case VS\{xith = (), then VS\{xij},h = Vg, so that
‘VS\{xij},h NCU]| = [Vsp NCU]| < 1; thus, S\ {;;} is also a specifying set for h on U with
respect to C[U].

Therefore, if S is such that Vj < ¢, S\ {x;,} is not a specifying set for h on U with respect to
Cl], thenVj € {1,...,t}, 3h; € VS\{:cq;j},h with hj(z;;) # h(z;,); noting that “h; € VS\{zij},h”
is equivalent to saying “h;(z;,) = h(x;,) forevery k € {1,...,t} \ {j},” this precisely matches
the definition of a star set in Section 4: that is, we have proven that {z;,,...,z;,} is a star set for
C U {h}, witnessed by {h, h1,...,h:}, and hence centered at h. [

Proof of Lemma 14 Lemma 14 follows immediately from Lemma 44 by noting that, for any mini-
mal specifying set S for h on U with respect to Ci4], Vz € S, |S\ {z}| < TD(h, C[U],U), so that
S\ {x} cannot possibly be a specifying set for i on U with respect to C[U/]. [ |

We are now ready for the proof of Theorem 13.

Proof of Theorem 13 Fix any m € N. First, note that for {z;};_; and {h;};_, as in Defini-
tion 2, letting U = {1, ..., Tuyin{s,m} }» fOr any positive integer i < min{s, m}, any subsequence
S C U with z; ¢ S has {ho,h;} C Vgp,. Thus, since z; € U, and ho(x;) # hi(z;), we have
Vs n, N ClU]| > 2. Since this is true for every such i < min{s,m}, every S C U without
{z1,. Tmin{s,my} € S has |[Vsp, N CU]| > 2. Therefore, TD(ho, ClU],U) > min{s,m}.
Thus, by the definitions of XTD and TD, monotonicity of maximization in the set maximized over,
and monotonicity of ¢ — TD(C, t),"> we have

XTD(C,m) > TD(C,m) > TD(C, min{s, m}) > TD(ho, C[UU],U) > min{s, m}.

Furthermore, it follows immediately from the definition that XTD(C,m) < m. Note that this
completes the proof in the case that s > m. To address the remaining case, for the remainder of the
proof, we suppose s < m, and focus on establishing XTD(C,m) < s.

For this, we proceed by induction on m, taking as a base case the fact that XTD(C,s) < s,
which trivially follows from the definition of XTD. Now take as an inductive hypothesis that for
some m > s, we have XTD(C,m — 1) < s. Fix any sequence U,,, = {x1,...,2m} € X,
and h : X — Y, and denote Uy,—1 = {x1,...,Zm-1}. Lett € NU{0} and S € U}, _,
be such that S is a minimal specifying set for h on U,,—; with respect to C[ly,—1]. If |S| >
TD(h, ClUp,),Un), then since S is a minimal specifying set for h on U, with respect to C[Uy,—1],
we have |S| = TD(h,ClUp-1],Un-1) < XTD(C,m — 1) < s by the inductive hypothe-
sis; thus, in this case we have TD(h,ClU,],Uy) < |S| < s. On the other hand, suppose

15.vS € X' vz € S, Vh, TD(h,C[S U {z}],S U {z}) = TD(h,C[S],S). Thus, TD(C,t + 1) =
maxpec Maxgext Maxzex TD(h, C[SU{z}],SU{z}) > maxpec maxgeyt maxges TD(h,C[S U {z}],SU
{z}) = maxpec maxgext TD(h,C[S],S) = TD(C,t).
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|S| < TD(h,ClUp],Un). In this case, since S is a specifying set for h on U,,—1 with respect
to C{Uy,—1], we have DIS(Vgp,) N Uy € (DIS(Vsp) N Um—1) U {zm} = {xm}. But since
|S| < TD(h,ClUpn),Un), S cannot be a specifying set for h on U, with respect to C[Uy,], so
that DIS(Vs ) N Uy, # 0. Therefore, DIS(Vs ) N Up, = {xy}. In particular, this implies that
S U{xp} is a specifying set for h on U,,, with respect to C[,,|, and in particular, must be a mini-
mal such specifying set, since |S U {z}| = |S| + 1 < TD(h, ClUp,],Uy,). Therefore, Lemma 14
implies that S U {xz,} is a star set for C U {h} centered at h. If h € C, this already implies that
|S U {xm}| < s; furthermore, we can argue that this remains the case even if h ¢ C, as follows.
Since x,, € DIS(Vs), we have Vgugs,.3,n 7# 0, so that 3go € C such that Vo € S U {z,},
go(x) = h(z). Therefore, S U {x,,} is also a star set for C centered at g, so that |S U {z, }| < s.
In particular, since S U {z,,} is a minimal specifying set for h on U,, with respect to C[U,,], we
have |SU{zy, }| = TD(h, ClU],Un ), so that TD(h, C[U,,], U,,) < s in this case as well. Thus, in

either case, we have TD(h, CU,,],Uy,) < 5. Maximizing over the choice of h and {z1,...,zn},
we have XTD(C, m) < s, which completes the inductive step. The result now follows by the prin-
ciple of induction. |

Next, we prove Theorem 15.

Proof of Theorem 15 Fix any m € Nand ¢ € [0,1]. Let {z;}$_, and {h;}]_, be as in Definition 2,
and let U = {z1,...,Tinfs,my} and G = {h; : i € {0,...,min{s,m}}. As in the proof of
Theorem 13, for any positive integer i« < min{s, m}, any subsequence S C U with z; ¢ S has
{ho,hi} € Vsp,. Thus, since x; € U for every i < min{s, m}, and every h; realizes a distinct
classification of ¢/ (i < min{s, m}), we have |Vg,, NG[U]| > [{t € {1,...,min{s,m}} : z; ¢
S}HA+1 > min{s, m}—|S|+1. In particular, to have | Vg, NG[U]| < 0|G[U]|+1 = §(min{s, m}+
1) + 1, we must have |S| > (1 — §) min{s, m} — d. Therefore, XPTD(ho, GIU],U,5) > (1 —
d) min{s,m} — 6. By definition of XPTD(#,m,d) and the fact that G C C, and since ¢ +—
XPTD(H, t,§) is nondecreasing (since V.S € Xt,Vx € S, Vh, XPTD(h, H[SU{z}], SU{x},d) =
XPTD(h,H|[S], S, d)), this further implies

Iﬁg(}gXPTD(H,m,é) > XPTD(G, m,d) > XPTD(G, min{s, m}, d)
> XPTD(ho, GlU],U,0) > (1 — §) min{s,m} — 6 > (1—25) min{s, m},

where this last inequality is due to the assumption that |C| > 3 (Section 2), which implies s >
1. Since XPTD(:,m,d) € N U {0}, this further implies maxycc XPTD(#,m,d) > [(1 —
26) min{s, m}| when 6 < 1/2.

To establish the right inequality, fix any H C C, let/ € A and h : X — Y be such that
XPTD(h,HU],U,5) = XPTD(H,m,d), and let S C U be a minimal specifying set for i on

U with respect to H{U]. If 6 = 0 or |S] < 1%5, then |S| — 1 < (1 - %5) |S] < |S], so that

XPTD(h, HU],U,5) < |S| = Kl - #‘r&) |S|—‘ Otherwise, suppose 6 > 0 and |S| > ITM, and

let k = L|S|/ L%|S|J J, and note that & > 1. Let Ry, ..., Ry denote disjoint subsequences of S

with each |R;| = L%

distinct. Note that, foreachi € {1,...,k}, (Vo\ g, \ Vis,n) NH[U] is the set of classifiers g in H [U]
with DIS({g, h}) N (S\ R;) = 0 but DIS({g, h}) N R; # 0; in particular, for any 4, j € {1,...,k}
withi # j, since R; C S\ R; and R; C S\ Rj, (VS\th\VS,h)ﬂH[U] and (VS\Rjyh\Vs’h)ﬂ’H[U]

|S| |, which must exist since minimality of S’ guarantees that its elements are
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are disjoint. Thus, since H[U] D (Vs N HU]) U Uf:1(VS\Ri,h \ Vs ) NH[U], we have

C?r

(HU| > |(Vs,, N H[U]) U (VS\RZh\VSh)mH[U]

1

.
Il

= [Vsn N H[U]| +

'Mw

Il
—

!
|(Varryn \ Vsp) NHIU Z (Vs\rip \ Vo) N HIU]|

>k Va\ R, Ven) NH|U]| .
le{ml’m’ I |( S\R;,h \ S,h) [ H
Thus, letting i* = argmin;cry 5y ’(VS\RiJ1 \ Vs i) NH[U]|, we have ‘(VS\Ri*,h \ Vs,n) N HU|
< #|H[U]|. Furthermore, since S is a specifying set for & on U with respect to H[U], |V ,NH[U]| <
1, so that (since Vg, C Vs\ Ry« ,h)

Vvrpe s VHIUY| = |(Vs\R,en \ Vau) N HU]) U (Vs NHUY)|
= | (Vi \ Vi) NHIU |+ [V NHIUL < 1A+ 1

Also, since
111
— | 14+6| — 146 -
k= !

this implies |Vg\ g, , N H[U]| < d|H[U]| + 1, so that XPTD (h, H[U],U, ) <
o =181 = R | =15] = | 25181 | = [(1- %) |S|]

Thus, for any § € [0, 1] and regardless of the size of |S|, we have XPTD(h, H[U],U,0) <
Kl -1 6) |S \-| Furthermore, since S is a minimal specifying set for h on I/ with respect to H|[U],
we have |S| < XTD(H,m) < XTD(C, m), and Theorem 13 implies XTD(C, m) = min{s, m}.
Therefore, XPTD(h, H[U],U, ) < [(1 - 1j5r 6) min{s, m}w Maximizing the left hand side over
the choice of h, ‘H, and U completes the proof. |

C.4 The Doubling Dimension

We now present the proof of Theorem 17

Proof of Theorem 17 For the lower bound, fix any ¢ € (0, 1], and take {z;}7_, and {h;}]_, as
in Definition 2, and let m = s A |1]. Let P be a probability measure on X' with P({z;}) =
1/m for each i € {1,...,m}. Thus, {ho,h1,...,hm} € Bp(ho,1/m). Furthermore, for any
i € {0,...,m} and any classifier g with P(z : g(x) # hi(x)) < 1/(2m), we must have g(z;) =
hi(z;) forevery j € {1,...,m}. Therefore, any 5---cover of Bp(hg, 1/m) must contain classifiers
90, -- -, gm WithVi € {0,...,m},Vj € {1,...,m}, gi(xj) = hi(x;). Thus, since each h; (withi <
m) realizes a distinct classification of {z1, . ..,z }, it follows that N'(1/(2m), Bp(ho, 1/m), P) >
m + 1. Noting that 1/m > e, we have that

1 1 1
supsup Dy, p(€) > Dy, p(€) >1og,y <N<2m’ Bp <h0, m) , P)) >logy(m + 1) >1logs <5 A E).

P heC
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For the remaining term in the lower bound (i.e., d), we modify an argument of Kulkarni (1989,
Proposition 3). If d < 5, then d < Log (5 A %), so that the lower bound follows from the above.
Otherwise, suppose d > 5. We firstlet {«, ..., 2/;} denote a set of d points in X’ shattered by C, and
we let G denote the set of classifiers g € C[{z},...,}}] with g(z}) = —1 and %= 1[g(z}) =

+1] = L%J. For any g € G, note that, if H is a classifier sampled uniformly at random from G,
a Chernoff bound (for sampling without replacement) implies

d—1
P(E:HH@D=M%HZd;1>Sem{—délk

Thus, there are at most |G| exp {— %z} elements h € G with S () = g(2h)] > =l
Now take Ho = {}, and take as an inductive hypothesis that, for some positive integer & < 1 +
exp {d4;81}, there is a set Hx_1 C G with [Hi_1| = k — 1 such that Vh,g € Hy_1 with h # g,
ST ) = g(2h)] < 2L Since [Hy_1| - |Glexp {—%Z} < |G|, 3gi, € G such that Vh €
Hi1, ST [ = gr(@))] < 2L, Thus, defining Hy, = Hj,_1 U {gx} extends the inductive
hypothesis. By induction, this establishes the existence of a set H C G with [H| > exp {dT_sl
such that Vh,g € H with h # g, S 1[h(a}) = g(«})] < 4L, Fix any ¢ € (0,1/4] and let
P denote a probability measure over X' with P({z}}) = & foreachi € {1,...,d — 1}, and
P({zl;}) = 1 — 4e. Note that any h,g € G with 2?2—11 1[h(z}) = g(=})] < 45t have P(x :
hz) # g(z)) > 71 A= = e Thus, H is an e-packing under the Ly (P) pseudometric. Recall
that this implies |H| < N(e/2,G,P) (Kolmogorov and Tikhomirov, 1959, 1961). Furthermore,
note that any g € G has P(z : g(z) = +1) = |4}] %5 < e Thus, letting h- € C be
such that Vi € {1,...,d}, h_(z;) = —1 (which exists, by shatterability of /, ..., z}), we have
G C Bp(h_,¢). Therefore, N'(¢/2,G,P) < N(e/2,Bp(h_,¢), P). Altogether, we have that

d—1
d S —g loga(e) < logy(|H]) < logy (M (e/2,Bp(h—.¢),P)) < Dh_p(e) < S%piugDh,P(E)-
€

For the upper bound, fix any h € C, any probability measure P over X, and any £ € (0, 1],
and fix any value r € [g,1]. Recall that any maximal subset G, C Bp(h,r) of classifiers in
Bp(h,r) with ming geq,.p24 P(x : f(x) # g(x)) > r/2 (called a maximal (r/2)-packing of
Bp(h,r)) is also an (r/2)-cover of Bp(h,r) (see e.g., Kolmogorov and Tikhomirov, 1959, 1961).
Thus, we have that N (5, Bp(h,7), P) < |G|, for any such set G,. Let m = [21In(|G,|)], and
let X1, X5, ..., X, be independent P-distributed random variables. Let F; denote the event that
Vf,g € Gr with f # ¢, Ji € {1,...,m} with f(X;) # ¢g(X;). Forany f,g € G, with f # g,
P(3i € {1,....m} 1 f(X) # g(X:) = 1= (1= Pla : f(z) # g(a))™ > 1 — (1—r/2)" >
1 —e™/2 >1—1/|G,]?. Therefore, by a union bound, P(F;) > 1 — ('%’“‘)ﬁ > 1 In
particular, note that on the event Fy, the elements of G, realize distinct classifications of the se-
quence (X1,...,X,,), so that (since G, C Bp(h,r)) |G,| is upper bounded by the number of
distinct classifications of (X7, ..., X,,) realized by classifiers in Bp(h,r). Furthermore, since
all classifiers in Bp(h,r) agree on the classification of any points X; ¢ DIS(Bp(h,r)), and
Bp(h,r) C C, we have that |G,| is upper bounded by the number of distinct classifications of
{X1,...,Xm} NDIS(Bp(h,r)) realized by classifiers in C.

By a Chernoff bound, on an event F» of probability at least 1/2,

{X1,..., X} NDIS(Bp(h,7))| < 1+ 2eP(DIS(Bp(h,r)))m.
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By the definition of the disagreement coefficient, this is at most 1 + 2efp, p(r)rm < 1+ 2e +
8eby, p(r) In(|G.|), which, if |G| > 3, is at most 11e6j, p(r) In(|G,|). By a union bound, the event
E1 N E3 has probability strictly greater than 0. Thus, letting m’ = [11e6 p(r) In(|G,|)], there
exists a sequence 1y, ..., T, € X such that |G, | is at most the max of 2 and the number of distinct
classifications of {1, ..., z,,} realized by classifiers in C. In the case |G,| > 3, this latter value is

/ d n d . .
at most (%) < (22626}"7’(;)1 (|G""D) by the VC-Sauer lemma (Vapnik and Chervonenkis, 1971;

Sauer, 1972).
Taking the logarithm, we have that

In(|G,|) < max {m(z), dln (22¢*0), p(r)) + dIn <ln(’dGT|)> } ,

which implies (see e.g., Vidyasagar, 2003, Corollary 4.1)
In(|G,|) < max {1,2d1n (22¢*0 p(r)) } = 2d1n (22620, p(r)) .

Dividing both sides by In(2), altogether we have that

.
Dup(e) = sup logy (N (5.Bp(h,1),P)) < sup log, (IGi])
7'6[5,1] TE[E,l]

< sup 2dlog, (22¢%0),p(r)) = 2dlog, (22e*0, p(¢)) .
rele,1]

In particular, by Theorem 10, this is at most 2dlog, (22¢* (s A 1)), so that maximizing the left
hand side over the choice of A € C and P completes the proof. |

Appendix D. Examples Spanning the Gaps

In this section, taking d and s as fixed values in N (with d > 3 and s > 4d), and taking X = N,
we establish that the upper bounds in Theorems 3, 4, 5, and 7 are all tight (up to universal constant
and logarithmic factors) when we take C = {z — 2lg(z) — 1 : S C {1,...,s},|S| < d},
and that the lower bounds in these theorems are all tight (up to logarithmic factors) when we take
C={zw2lg(x)—1:8 €24 U{{i} : d+1 < i < s}}. One can easily verify that, in both
cases, the VC dimension is indeed d, and the star number is indeed s.

D.1 The Upper Bounds are Sometimes Tight

We begin with the upper bounds. In this case, take
C={z—2lg(x)—1:SC{1,...,s}|5] <d}. (63)

For this hypothesis class, we argue that the lower bounds can be increased to match the upper bounds
(up to logarithmic factors). We begin with a general lemma.

For each i € {1,...,d}, let X; = {[s/d|(i —1)+1,...,[s/d]i}, C; = {z = 21y (x) —
1:t e X}U{zr — —1}, and let D; be a finite nonempty set of probability measures P;
on X x Y such that P;(X; x V) = 1 (i.e., with marginal over X" supported only on Aj). Let
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D= {éZlePi Vie{l,...,d}, P, € ID)Z-}. Note that for any choices of P; € I; for each i €
{1,...,d}, letting P = %Z?:l P;, we have that Vi € {1,...,d}, Vo € X; with P;({z} x Y) > 0,

P({(z,+1 e P{(a 41}
P({(z,+1)}{z} x V) = P(({{(:U}i; 3)2})) - dgl Z]jll Pi({z} x V)

_BUE DY) o N
= Barxy) A D> D),

so that the conditional distribution of Y given X = z (for (X,Y) ~ P) is specified by the con-
ditional of Y’ given X’ = x for (X', Y’) ~ P,, for the value 7 with € X;. Furthermore, since
any ¢ € X; has P({z} x Y) = 0 if and only if P;({z} x YV) = 0, without loss we may define
P{(z,+D)}{z} x V) = P,({(z,4+1)}|{z} x V) for any such . Foreachi € {1,...,d} and
g,0 € (0,1),let A;(e,d) denote the minimax label complexity under ID; with respect to C; (i.e., the
value of Ap, (&, ) when C = C;). The value Ap(e, §) remains defined as usual (i.e., with respect to
the set C specified in (63)).

Lemma 45 Fixany vy € (2/d,1), e € (0,7v/4), and § € (O, ﬁ) If glind} Ai((4/7)e,v) > 2,
ie{l,..,

then

Ap(e,d) > (7/4)dieglind} Ai((4/7)g,7)-

-----

Proof Fix any n € N with n < (y/4)dmingeq . g3 Ai((4/7)e,7). Denote n' = [W—‘ and
note that n’ < n and n’ < min;eqy gy Ai((4/7)e,7). Foreachi € {1,...,d}, let P; € D,
and denote g; = argmingc, erp, (g) (breaking ties arbitrarily). We will later optimize over the

choice of these P;. Also let g* = Z?Zl g; 1 x,, the classifier that predicts with g;" on each respective
&, set; note that, since each g classifies at most one point as +1, we have g* € C. Denote
P = é 2?21 P,. Let hp denote the (random) classifier produced by .A(n) when Pxy = P. Note

that if E‘le 1 [erpi (ﬁp) —erp, (g7) > (4/7)6} > (v/4)d, then

e () = om0 = 3o (i) ot § o)
i=1 i=1
> Cllierpi <ilp) — %Zerpl (") = ;i (erpi (ilp) —erp, (gf‘))
i=1 i=1 i=1
> ;in lerp, (hp) = erp, (g5) > (4/7)] (4/7)e > =.
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Therefore,

=
7N
o)
=
e,
S
>

p) - inf erp(h) >e) zP(Zn lerp, (hip) —erp, (g7) > (4/7)] > (V/4)d>

i=1
- 1—1@@1 lerp, (hp) —erp, (g7) > (4/7)] < (7/4)d>
=1
—1-P (i (1= 1 [erp. (he) = err (1) > (4] ) 2 @ 7/4)61)
=1
o1 mz (1= P (exn, (i) — ern 68) > (4/22)
= _ﬁ + 1= ,yd ZIP’ (eI'p (hp) —erp, (g7) > (4/7)5) , (64)

where the second inequality is due to Markov’s inequality and linearity of expectations.

Now note that there is a simple reduction from the problem of learning with C; under P; to
the problem of learning with C under P. Specifically, for a given i.i.d. F;-distributed sequence
(Xi1,Yi), (Xi2,Yi2), ..., we can construct an i.i.d. P-distributed sequence (X7, Y7), (X3%,Y7), ...
as follows. For each j € {1,...,d} \ {i}, let (Xj1,Yj1), (Xj2,Y}2),... ~ P; beiid., and in-
dependent over 7, and all independent from the (X, Yi) sequence. Let j1, jo, ... be independent
Uniform({1,...,d}) random variables (also independent from the above sequences). Then for
eacht € N,letr, = 3%, 1[js = ji], and define (X[, Y/) = (Xj,r, Yi,r,). One can easily verify
that this these (X/, Y{) are independent and P-distributed. Now we can construct an active learning
algorithm for the problem of learning with C; under P;, given the budget n’ < n, as follows. We
execute the algorithm A(n). If at any time it requests the label Y} of some X/ in the sequence such
that j; # 4, then we simply use the value Y/ = Yj,,, (which, for the purpose of this reduction,
is considered an accessible quantity). Otherwise, if .A(n) requests the label Y, of some X] in the
sequence such that j; = ¢, then our algorithm will request the label Y;,, and provide that as the value
of Y/ to be used in the execution of A(n). If at any time .A(n) has already requested n’ labels Y/
such that j; = 4, and attempts to request another label Y}’ with j; = i, our algorithm simply returns
an arbitrary classifier, and this is considered a “failure” event. Otherwise, upon termination of .A(n),
our algorithm halts and returns the classifier .A(n) produces. Note that this is a valid active learning
algorithm for the problem of learning C; under P; with budget n’, since the algorithm requests at
most n’ labels from the P;-distributed sequence. In particular, in this reduction, we are thinking of
the samples (X/, Y;) with j; # i as simply part of the internal randomness of the learning algorithm.

Let B;Dl denote the classifier returned by the algorithm constructed via this reduction. Fur-

thermore, if we consider also the classifier h p. returned by A(n) when run (unmodified) on the
P-distributed sequence (X7,Y7), (X3,Y3),..., and denote by n'p; the number of labels Y with
Jj¢ = i that this unmodified .A(n) requests, then on the event that n’Ri < n/, we have iLIPJ- =h Pi-
Additionally, let np; denote the number of labels Y; requested by A(n) with X; € X; (when A(n) is
run with the sequence {(X;, ¥;)}2°,), and note that the sequences {(X/,Y;)}:°; and {(X+,Y;)}5°,
are distributionally equivalent, so that (iz P njpz) and (ﬁ p,np,;) are distributionally equivalent as
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well. Therefore,

—P (erpz. (hrs) = err (g7) > (4/7)

—P (erpl (hp) —erp, (g7) > (4/7)e and nlp, < n)

=P (erp, (Wp;) = erp, (97) > (4/7)e) = P (erp, (Rp, ) —exp, (g7) > (4/7)2 and i, > ')
> P (orp, () = erp, (6) > (4/7)2) = P (nlp; > )

_p (erpz (iﬂp,i) —erp, () > (4/7)5) —P (np; > )

> P (erp, () —err, (61) > (4/)e) — —ord]

where this last inequality is due to Markov’s inequality.
Applying this to every i € {1,...,d}, this implies

;i (err, (hp) —erp, (67) > (4/)¢)

> _dln’g [np; i (erpi (lilpz) —erp, (g7) > (4/7)5) .

By linearity of the expectation, .- Z?:l Elnp;) = 7K [ZZ 1 npzl < 75 < 3, so that the

&.lH

above is at least 4
14l ZP (erp, (ps) —err (g7) > (4/)¢)

Plugging this into (64), we have that

]P’(erp<ﬁp> - Iiliei(iéerp(h) > €> > — 4377 + g ’delP’(erp (hm) —erp(g;) > (4/7)5).

The above strategy, producing fi’P ;» s a valid active learning algorithm (with budget »’) for any
choices of the probability measures Pj j€{1,...,d}\ {i}. We may therefore consider its behav-
ior if we choose these at random. Speciﬁcally, for any probability measure T\ over x j=ilDj, let
(P TN Y ™ IT\¢, and for any P; € I;, let Py P = ip+1 Zﬁél gn\l Then h~ is the

H\’L P, N
output of a valid active learning algorithm (with budget n’); in particular, here we are considering the

P; rp\i as internal random variables to the algorithm (along with their corresponding (Xjt, Yj¢) sam-
ples used in the algorithm, which are now considered conditionally independent given { i\ }istis

where each (X, Y};) has conditional distribution Pj,H\i)- that is, random variables that are inde-
pendent from the data sequence (X;1, Yi1), (X2, Yi2), . . .. Now note that, since n’ < A;((4/7)e, ),

P;eD; geC;

max P <erpi <h~ “ ) — inf erp,(g) > (4/7)5) > 7. (65)

95



HANNEKE AND YANG

For any given sequence P, ..., Py, with P; € D; for each j € {1,...,d}, for every i €
{1,...,d}, denote ¢;(P;,{P;}j%) = P (erpi (B’PZ) — infgec, erp,(g) > (4/7)5), where P =
% Z;l:l Pj as above. Then, by the law of total probability, (65) may be restated as

ggﬁlﬁl [1/11‘ <Pi {E,H\i}#i)} > 7.

Since this holds for every choice of IT\?, we have that

inf max E | ( P, { ;i } > .
inf max |:1;Z)z< i 1 By #i)]_v

Since each [D; is finite, by the minimax theorem (von Neumann, 1928; von Neumann and Morgen-
stern, 1944), for each i € {1,... ,c{}, there exists a probability measure II; over I; such that, if
P; ~ TI; (independent from every {Pj,n\i}j;ﬁi)’ then

e o (245 )| e o (2 45 )|

In particular, taking these { P;}%_, to be independent, we have that Vi € {1,...,d},

o (Pofrd )| 2melo (PP )| —u el (m {2 ) |20

Thus,
d d o d o
A, Z Ak 2 [Z (P {Pj}#)] ->efu(2{n),,)] 200
Altogether, we have that
- . 3y 4 1 d
S P (erp (hp) — Inf erp(h) > 8) > T, ti5d S Z;% (P {Pj}ji)
i€{l,...,d} ie{l,..,d} =
3y 4y T o5

> — =
- 4—7—’_4—7 4—7

Since this holds for any active learning algorithm A and n < (y/4)dmin;eqy g Ai((4/7)e,7)s
the lemma follows. n

With this lemma in hand, we can now plug in various sets D; to obtain lower bounds for learning
with this set C under various noise models. In particular, we can make use of the constructions of
lower bounds on A;(e,0) given in the proofs of the theorems in Section 5, noting that the VC
dimension of C; is 1, and the star number of C; is |s/d|. Note that, in the case d < 1, the lower
bounds in each of these theorems already match their respective upper bounds up to constant and
logarithmic factors (using the lower bound from Theorem 3 as a lower bound on Ay () (e,9) for 8
near ). We may therefore suppose d > 32 for the remainder of this subsection.
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The realizable case: For the realizable case, foreachi € {1,...,d}and ¢ € {1,...,[s/d]}, let
Pit be a uniform distribution on {[s/d|(i — 1) +1,...,|s/d](i — 1) +t} C A}, and let D; denote
the set of probability measures P; in RE having marginal over X among {P;; : 1 < ¢t < |s/d]}
and having f% € C;. Noting that the star number of C; is |s/d| and that & is a (maximal) star set
for C;, and recalling that the first term in the “max” in the lower bound of Theorem 3 was proven
in Appendix B.1 under the uniform marginal distribution on the first ¢ elements of a maximal star
set (for an appropriate value of ¢, of size at least 1 and at most the star number), we have that for

= (0. 5t)-

5 1
A;(16e,1/4) Z min< =, = &
(16e /)len{d 5}

Therefore, Lemma 45 (with v = 1/4) implies that for D = {é S P Vie{l, ..., d}, P, G]D)i},
Vs € (0, ),

Ap(g,0) 2 min {5, (j} .
Furthermore, for each choice of Pi,..., P; (with each P; € D), by construction, every ¢ €
{1,...,d} has at most one x € X; with P;({(z,+1)}|{z} x V) = 1, and every other 2’ in A; has
P({(«',+1)}|{2'} x V) = 0. Therefore, since P({(x,+1)}|{z} x V) = Pi({(z,+1)}{z} x V)
for every x € &, for P = % Z?Zl Pj, we have that there are at most d points x in U’jzl X; with
P({(x,+1)}[{z} x ) = 1, and all other points z in | JL_, X; have P({(z,+1)}|{z} x ) = 0. In
particular, this implies that for (X,Y") ~ P, P(f5(X) # Y |X € Ule X;) = 0. Since we also have
that vVt € N'\ Ule X, P({t} xY) =0, we can take f5(z) = —1 forevery x € X'\ ngl AX; while
guaranteeing erp(f5) = 0. Since Ule X; C{1,...,s}, we also have that f}, € C. Together, these
facts imply P € RE. Thus, D C RE, which implies Arg(g,0) > Ap(e, d), so that

d
Agrg(g,0) 2 min {5’5}

as well. Since the upper bound in Theorem 3 is within a factor proportional to Log(1/¢) of this,®
this establishes that the upper bound is sometimes tight to within a factor proportional to Log(1/¢).

Bounded noise: In the case of bounded noise, fixany 8 € (0,1/2) and e € (0,(1—203)/(256¢)).
Take ¢ = 22%¢ and k = min{[s/d| — 1, |1/¢]}, and for each i € {1,...,d}, let D; be defined
as the set RR k, ¢, 3) in Lemma 26, as applied to the hypothesis class C; with {z1,..., 2541} =
{ls/d](i—1)+1,...,|s/d](i—1)+k+1}, ho = —1, and hj = 21{[5/dj(z‘—1)+j} — 1 for each
j €{1,...,k}. Then Lemma 26 implies

plk—1) B8 s 1-28
Ai(16ee,1/(4e)) > 30— 252 2 1= 252 mln{d 5}'

Furthermore, recall from the definition of RR(k, ¢, #) in Section A.2 that ; is a finite set of prob-
ability measures, and every P; € D; has P;((X \ {z1,...,2,4+1}) x V) = 0. In particular, note
that {x1,...,zx11} C A in this case. Furthermore, every P, € D; has Va € {z1,..., 2},

16. Note that, although 1 ( y can sometimes be much smaller than s /\ 4 we always have s A ¢ S LOg(ﬁ) Log (%)

that this s A d lower bound does not contradict the Log ( ) upper bound.

Log( )
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P({(z,+1)}{z} x ) € {B,1 — B}, and at most one x € {z1,...,x} has P;({(z, +1)}|{z} x
V) = 1— 4, while P;({(xgs1,+1)}|[{zr+1} x ¥) = 0. Thus, for any choices of P, € D; for
each i € {1,...,d}, the probability measure P = é Zle P; satisfies the property that, Vo € X
with P({z} x Y) > 0, P({(z,4+1)}|{z} x V) € {0,8,1 — B}, and there are at most d values
x € X with P({z} x YY) > 0 and P({(x,+1)}|{z} x V) = 1 — 5. In particular, this im-
plies that without loss, we can take f;, € C, and furthermore that P € BN(/3). Thus, for the set

D= {% Z‘ij:l P :Vie{l,...,d},P, € Di},wehave]D) C BN(p). Lemma 45 (withy = 1/(4e))
then implies that Vé € <0 : >

’ 16e—1

1—-28)d
No(a(0) = Aofe.0) 2 _min | A(16cz,1/(40) 2 gy min {3, 2.

For 3 bounded away from 0, the upper bound in Theorem 4 is within a polylog (%) factor of this,
so that this establishes that the upper bound is sometimes tight to within logarithmic factors when
B is bounded away from 0. Furthermore, since RE C BN(f), the above result for sometimes-
tightness of the upper bound in the realizable case implies that the upper bound in Theorem 4 is also
sometimes tight to within logarithmic factors for any 5 near 0.

Tsybakov noise: For the case of Tsybakov noise, the tightness (up to logarithmic factors) of the
upper bound for o < 1/2 is already established by the lower bound for that case in Theorem 5.
Thus, it remains only to consider o € (1/2,1). Fix any values a € [4,00), a € (1/2,1), and
e € (0,1/(2"a%/®)), let a’ be as in the definition of TN(a, ), and let

k= min{GJ -1, {(a&?J ’ {61/54_1;% }

B =3- (’“2%5)1’&, and ¢ = {235, Note that ¢ € (0,1), 8 € [1/4,1/2), and 2 < k <
min{|s/d| —1,[1/¢|} (following the arguments from the proof of Theorem 5, with ¢ replaced
by 64¢). Furthermore, Vi € {1,...,d}, let D; be the set RR(k, ¢, 5) in Lemma 26, as applied to
the class C;, with {x1, ..., zp11} = {|s/d|(i—1)+1,...,|s/d|](i — 1)+ k+ 1}, ho = —1, and
hj = 214 5/4)(i—1)+j1 — 1 foreach j € {1,...,k}. Thus, by Lemma 26,

Bk —1)In(4) _ ;e\20-2 ,
Ssaap 2(g) R

a/
_ a—1 200—1 _ _
- 2 1 2—2a . 5 (a/) = a/47 i 1 oy 1 2—2a . 5 1 2a—1
a’ | — min < — — —a a’ | — min{ —, ———
~ € d e e ~ € d’ alleg ’

where this last inequality relies on the fact (established in the proof of Theorem 5) that (a’ )QT <
a4 Ts,

We note that any P; € D; has P((X \ {|s/d](i — 1) +1,...,|s/d](i — 1) + k + 1}) X
Y) = 0. Without loss of generality, suppose each P; € D; has n(z; P;) = 0 for every x € X'\
{ls/d|(i—1)+1,...,|s/d|(i — 1) + k + 1}. As in the proof of the lower bound in Theorem 5,
we note that any P; € I; has Pi((z,y) : [n(z; P) —1/2] < t) < a't*/(0=) for every t > 0,
and furthermore that f7 (-) = sign(2n(+; ;) — 1), which has at most one = with f3 (z;) = +1

A;(64¢,1/16) >
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(by definition of RR(k, {, #) in Section A.2). This further implies that, for any choices of P; € D;
for each i € {1,...,d}, the probability measure P = é Z?Zl P; has support for its marginal over
Xonlyin UL, {|s/d|(i —1)+1,...,|s/d|(i — 1) + k + 1}, and foreach i € {1,...,d}, Vz €
{ls/d](i—1)+1,...,|s/d](i—1) + k+ 1}, n(x; P) = n(x; P;), while we may take n(z; P) =

0 for every x ¢ Ule {Ls/dj (¢—1)+1,...,|s/d](i — 1) + k + 1}. Therefore, f} has at most d
points = € U;-izl X; with f5(x) = +1, and fp(z) = —1 for all other z € X: thatis, fp € C.
Additionally, since the supports of the marginals of the P; distributions over X are disjoint, we have
that V¢ > 0,

d
P((z,y): |n(x; P) —1/2| < t) = Z n(z; P) —1/2| < t)

& \

S

d
gz (@,9) : In(@; P) — 1/2] < t) < éza/ta/u—a) _ el

=1

Thus, the set D = {é St P:Vie{l,...,d},P e ]D)i} satisfies D C TN(a, o). Combined
with the fact that each set D; is finite (by the definition of RR(k, ¢, 8) in Section A.2), Lemma 45
(with v = 1/16) implies that V6 € (0, z).

1 2—2a 5 1 200—1
ArN(a,a)(€;6) = Ap(e,d) 2 dlefnl,m’d}A i(64e,1/16) 2 <5> min {d’ al/as} d.
Since this is within logarithmic factors of the upper bound of Theorem 5, this establishes that the
upper bound is sometimes tight to within logarithmic factors (for sufficiently small values of ¢).

Benign noise: We can establish that the upper bound in Theorem 7 is sometimes tight by reduction
from the above problems. Specifically, since RE C BE(v) for every v € [0,1/2), for the above

choice of C we have that Vv € [0,1/2], Ve € (0, 515), V6 € (0, ).

’916 » 15

Aoy (219) = Are(e,0) 2 min {52 |

Furthermore, the lower bound in Theorem 7 already implies that Ve € ( , ) Vo e (O, 214]

2

14
ABE(w) (e,6) 2 ng-

Together, we have that Vv € [0,1/2), Ve € (0, 2

e )> Y0 € (0,57

2 d 2 d
Apg() (e, 6) 2 max {V2d, min {5, }} e V—Zd + min {5, } i
€ € € €
Thus, the upper bound in Theorem 7 is sometimes tight to within logarithmic factors.

D.2 The Lower Bounds are Sometimes Tight

We now argue that the lower bounds in Theorems 3, 4, 5, and 7 are sometimes tight (up to log-
arithmic factors). First we have a general lemma. Let X7 C X and Xy = X \ A}, and let
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Cy, Cy be hypothesis classes such that Vi € {1,2}, Vh € C;, Vz € X \ &, h(x) = —1. Fur-
ther suppose that Vi € {1,2}, the all-negative classifier x — h_(x) = —1 is in C;. For each
i € {1,2} and vy € [0, 1], let D;(y) be a nonempty set of probability measures on X x ) such that
VP, € Dj(y), Pi(X; x Y) = 1; further suppose Vv,~" € [0,1] with v < ~/, D;(y) 2 Dy(v).
Also, for each i € {1,2}, 7,6 € [0,1], and ¢ > 0, let A;,(e,d) denote the minimax label
complexity under ;(y) with respect to C; (i.e., the value of Ap,(,)(g,0) when C = C;). Let
D= {yP+ (1 =7)P: P1 € Di(y), P2 € D2(1 —7),7 € [0,1]}.

Lemma 46 For C = C; UCy, Ve, 0 € (0,1),

€ 1) € )
Ap(e,8) < 2 Aq (e — S ) Ay L ——
(e, 0) < Vi%l?l]max{ L(y /8>v0<2(7+€/8) 3> 2,1~ /8)V0<2(1—7+5/8) 3)}

Proof Foreachi € {1,2} and~y € [0,1], let A, ; be an active learning algorithm such that, for any

integern > A; 5 ( ) ,if Pxy € Dj;(7), then with probability at least 1 — /3, the classifier

_e 9
2(y+¢€/8) 3
h produced by A, i(n) satisfies erpyy (h) — infhec, erpyy, (h) < m; such an algorithm is
guaranteed to exist by the definition of A; (-, -).

Now suppose Pxy € D, so that Pxy = vP; + (1 — «) P, for some v € [0,1], P; € Di(7),
and P» € Do(1 — 7). Let (X1,Y7),(X2,Y2),... be the data sequence, as usual (i.i.d. Pxy).
Consider an active learning algorithm .4 defined as follows. We first split the sequence of indices
into three subsequences: ig, = 2k — 1 for k € N, 411,41,2,... is the increasing subsequence
of indices ¢ such that /2 € N and X; € A}, and 431,422, ... is the remaining increasing sub-
sequence (i.e., indices 7 such that i/2 € N and X; € Ab). Given a budget n € N, A(n) pro-
ceeds as follows. First, we let m = {% In (32)], 71 = max {2 377" | 1y, (Xio) — 15,0}, and
Y2 = max {3 L, (Xio.) — 15, 0}. By Hoeffding’s inequality and a union bound, with
probability at least 1 — 6/3, Vi € {1,2},

Pxy (X x V) — g <y < Pxy (X x V). (66)

Denote by H this event.

Next, for each j € {1, 2}, if the subsequence i;1,i;2, . .. is infinite, then we run A, ;([n/2])
with the data subsequence { X ,gj ) beey = {1 X, }p2 s if the algorithm A, ; requests the label for an
index k (i.e., corresponding to X ,gj )), then A (n) requests the corresponding label Yi, , and provides
this value to A, ; as the label of X ,gj ). Let fzj denote the classifier returned by this execution of
A,;.i([n/2]). On the other hand, if the subsequence i;1,1;2, . . . is finite (or empty), then we let

h; denote an arbitrary classifier. Finally, let A(n) return the classifier h = ﬁl 1x, + ﬁg ly,. In
particular, note that this method requests at most n labels, since all labels are requested by one of
the A, ; algorithms, each of which requests at most [n/2] labels.

For this method, we have that

A~

CrPyy (}Al) - }112(%‘1 CIPyy (h) = ~erp, (ill) + (L =7)erp,(h) — }112(%: (verp, (h) + (1 — y)erp,(h))

~

< (et () = L enp, () + (1= ) (ernCia) = jng ern)).
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For each j € {1, 2}, since every h € C\ C; has h(x) = h_(x) forevery x € X}, and h_ € C;, we
have that infcc erp, (h) = infrec; erp; (h). Thus, the above implies

ctp ()=t erp (1) < 7 (et (i) = fnf expy () + (1) (ernCha) = inf o) ).
(67)

If v = 0, then with probability one, every X; € Ab, and {(X,,,Yi,,)}72, is an infinite
i.i.d. P,-distributed sequence. Furthermore, 1 — /8 < 79 = 1 —¢/16 < 1, so that Pxy €

Da(y2). Thus, if n > 2A5; /g (m, g) then we also have n > Ao, (m, %)
(by monotonicity of Dy(-) and the label complexity), so that with probability at least 1 — §/3,
erp,(he) — infpec, erp, (h) < 2(72;/8) = 2(1+‘3€/16) < 5 (here we are evaluating the label com-
plexity guarantee of \A., » under the conditional distribution given 2, and then invoking the law of
total probability and intersecting with the above probability-one event). Combined with (67), this

implies erp,., (h) —infpcc erpy, (h) < §. If v = 1, then a symmetric argument implies that if n >

2A11-¢/8 (m, %), then with probability at least 1 — §/3, erp,, (h) — infpec erpy, (h) < 5.
Otherwise, suppose 0 < v < 1. Note that, on the event H,y—¢/8 < 3 <yand1—vy—¢/8 <
72 < 1—7,sothat Dy (1) € Dy((y —¢/8) Vv 0)and Da(y2) € Da((1 — v —&/8) v 0), and hence

that
€ 1)

Aoy (—— 2 < e 9
Y\ 20y +¢/8)73) = THOEAVO\ 9(y 1 £/8)" 3
and

JU A P e 0
212\ 2(yy +¢/8)'3) = "2 AVON\ o1 1 £/8)3)
In this case, by the strong law of large numbers, with probability one, Vj € {1,2}, the sequence
151,142, - - - €Xists and is infinite. Since the support of the marginal of P; over X’ is contained within
Xj, and X and X5 are disjoint, we may note that (X;. ,,Y; ), (X ,,Yi ,),... are independent

31 5,29 1,2
Pj-distributed random variables. In particular, if

g1

€ ) € 1)
n > 2max Al,('y—s/B)\/O mag ,AQ,(l—v—s/S)vo mvg )

then (by the label complexity guarantee of A, ; applied under the conditional distribution given
7vj» combined with the law of total probability, and intersecting with the above probability-one
event) there are events H; and Hj, each of probability at least 1 — §/3, such that on the event
H N Hy, erp (hy) — infpec, erp (h) < m < %, and on the event H N Ha, erp,(ha) —
infpec, erp,(h) < 2(72j-8/8) < 2(15_7). Therefore, on the event H N Hy N Ho, the right hand side

~

of (67) is at most 5 + (1 — fy)ﬁ =g, so thaterp,, (h) — infpec erp,, (h) < e. By a union
bound, the probability of H N H; N Ho is at least 1 — §. Since this holds for any Pxy € D, the
result follows. n

We can now apply this result with various choices of the sets D () and Dy(+y) to obtain up-
per bounds for the above space C, matching the lower bounds proven above for various noise
models. Specifically, consider X = N, &} = {1,...,d}, X2 = {d+1,d+2,...}, C; =
{fr—=21g(x) —1:S5C{1,...,d}},and Cy = {z — 21y (2)—1:t € {d+1,d+2,...,s}}U
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{z + —1}. Note that C; and Cj satisfy the requirements specified above, and also that the VC
dimension of C; is d and the star number of C; is d, while the VC dimension of C, is 1 and the star
number of Cy is s — d. Furthermore, take C = {z +— 21 g(z) —1: S € 2t U {{i} : d+1 <
i < s}}, and note that this satisfies C = C; U Cy, and C has VC dimension d and star number s.

The realizable case: For the realizable case, we can in fact show that that lower bound in The-
orem 3 is sometimes tight up to universal constant factors. Specifically, let D; denote the set of
all P; € RE with Pj(X; x V) = 1, for each i € {1,2}. For every v € [0,1] and i € {1,2},
define D;(y) = D;. In particular, note that for any P € RE, for any measurable A C X x ),
P(A) = P(X; xY)P(A|X1 X))+ P(Xy x)Y)P(A|X2 x ). Furthermore, note that any ¢ € {1, 2}
with P(X; x Y) > 0 has P(- x Y|X; x V) supported only in X;, and has P(:|X; x ) € RE, so that
P(-|X; x)Y) €D;. Thus, Pe D ={yPi+ (1 —7)P2: P, € Dy, P, € Do,y € [0,1]}. Therefore,
RE C D. Together with Lemma 46, this implies Ve, 0 € (0,1),

a5 ) 2 o (7558 )- o (s )

e d )
< Mo E,2) As0 (5.2
_2max{ 1,0 <373>7 2,0 <372>}7

for A; (-, -) defined as above.

Now note that, since every P; € Dy has P;(-x)) supported only in X}, and P; € RE, and since
C contains classifiers realizing all 2¢ distinct classifications of X}, 3hp, € Cy witherp, (hp,) = 0;
thus, without loss, we can take f}Sl = hp,, so that P; is in the realizable case with respect to C;.
In particular, since there are only d points in A7, if we consider the active learning algorithm that
(given a budget n > d) simply requests Y; for exactly one ¢ s.t. X; = x, for each x € A for
which 3X; = z, and then returns any classifier h consistent with these labels, if Pxy € Dy, with
probability one every = € X; with Pxy ({z} x J) > 0 has some X; = z, so that erp,.,. (h) = 0.
Noting that this algorithm requests at most d labels, we have that Ve, € (0, 1),

)
A — -] <d.
(50 <

Similarly, since every P € Do has P»(- x V) supported only in X3, and % € RE, fp, is
either equal —1 with P-probability one, or else 3z € {d + 1,...,s} with f (z) = +1; in either
case, 3hp, € Cqy with erp,(hp,) = 0; thus, without loss, we can take fg, = hp,, so that P
is in the realizable case with respect to Co. Now consider an active learning algorithm that first
calculates the empirical frequency P({z}) = LS 1[X; = 2] foreachz € {d +1,...,s}

among the first m = [ 3 In (@ﬂ unlabeled data points. Then, foreach z € {d +1,...,s},

2¢4
it P({x}) > (1 — £/3)e/3, the algorithm requests Y; for the first i € N with X; = x (supposing
the budget n has not yet been reached). If any requested value Y; equals +1, then for the x €
{d+1,...,s} with X; = z, the algorithm returns the classifier 2’ — 21,1 (2') — 1. Otherwise, the
algorithm returns the all-negative classifier: 2’ — —1. Denote by h the classifier returned by the
algorithm. By Hoeffding’s inequality and a union bound, with probability at least 1 — /3, every x €
{d+1,...,s} has P({z}) > Pxy ({z} x V) — (¢/3)2. Also, if Pxy € RE, then with probability
one, every Y; = f;;xy(Xi). Therefore, if Pxy € s, on these events, every z € {d+ 1,...,s}
with Pxy ({x} x ) > &/3 will have a label Y; with X; = x requested by the algorithm (supposing
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sufficiently large n), which implies h(z) = [Py, (®). Since f5  has at most one x € X» with
[Py, (x) = +1, and if such an z exists it must be in {d + 1, ..., s}, if any requested Y; = +1, we

~

have erp,, (h) = 0, and otherwise either no = € X has TPy (x) = +1 or else the one such x has

~

Pxy({z}xY) < ¢/3;ineither case, wehave erpy, (h) = Pxy ({z : fp, () = +1}xY) <¢/3.
Thus, regardless of whether the algorithm requests a Y; with value +1, we have erp, ., (ﬁ) <e/3.
By a union bound for the two events, we have that P(erp, ., (h) > ¢/3) < §/3 (given a sufficiently

large n). Furthermore, there are at most min {5 —d, m points x € {d + 1,...,s} with

P({z}) > (1 — ¢/3)e/3, and therefore at most this many labels Y; are requested by the algorithm.
Thus, a budget n of at least this size suffices for this guarantee. Since this holds for every Pxy € Do,

we have that 5 . )
&
Moo (2 2) <minds—d — U< =L
20 (3’3) —mm{“ ’<1—e/3>e/3} Nmm{ }

Altogether, we have that Ve, 6 € (0,1),

Agrg(g,0) < max {min {5, i} ,d} .

Thus, the lower bound in Theorem 3 is tight up to universal constant factors in this case.!”

Bounded noise: To prove that the lower bound in Theorem 4 is sometimes tight, fix any 8 €
(0,1/2), and let D; denote the set of all P; € BN(3) with P;(&; x V) = 1, for each i € {1,2}.
For all v € [0,1] and ¢ € {1,2}, define D;(y) = D;. As above, note that for any P € BN(f),
for any measurable A C X x Y, P(A) = P(X; x Y)P(A|X) x V) + P(Xy x Y)P(A|Xy x Y).
Furthermore, any i € {1,2} with P(X; x ) > 0 has P(- x Y|X; x ) supported only on Xj,
and since n(x; P(:|X; x ))) = n(z; P) for every xz € X;, we have P(-|X; x )) € BN(/3), so that
P(|X; xY) €D;. Thus, Pe D ={yPi+ (1 —v)P>: P € Dy, P, € Dy, € [0,1]}. Therefore,
BN(5) C D. Together with Lemma 46, this implies Ve, § € (0,1),

) )
Agng)(e,0) < Ap(e, 0) < 2max {AI,O <3, 3> ;A2 <3, 3> } :

for A; (-, -) defined as above.

Now note that, for each i € {1, 2}, since every P; € D; has P, € BN(3), we have [ € C.
Furthermore, since every h € C\ C; has h(x) = —1 for every x € AXj, and the all-negative function
x — —1is contained in C;, and since P;(X; x ))) = 1, without loss we can take ff,i € C; (i.e., there
is a version of f, contained in C;). Together with the condition on n(-; P;) from the definition of
BN(p), this implies each P; satisfies the bounded noise condition (with parameter /3) with respect
to C;.

Since this is true of every P, € Dy, and the star number and VC dimension of C; are both equal
d, the upper bound in Theorem 4 implies Ve € (0, (1 — 24)/8), 6 € (0,1/8],

) 1 d
Mo(=2,2)<———d polylog [ — ) .

17. The term Log (min {é, |C] }) in the lower bound is dominated by the other terms in this example, so that this upper
bound is still consistent with the existence of this term in the lower bound.
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Similarly, since every P» € DD, satisfies the bounded noise condition (with parameter 3) with respect
to Co, and the star number of Cy is § — d < s while the VC dimension of C, is 1, the upper bound

in Theorem 4 implies Ve € (0, (1 —253)/8),0 € (0,1/8],
p } polylog (1> .
0]

) 1 1-—-
A - -] < ——-mi
2,0 <3, 3> S =28y min {5,
Altogether, we have that
1 1-2 d
Apnepy(€,0) S m max {min {5, . B} ,d} polylog <5(5> .
For (8 bounded away from 0, this is within logarithmic factors of the lower bound in Theorem 4,
so that we may conclude that the lower bound is sometimes tight to within logarithmic factors in
this case. Furthermore, when 3 is near 0, it is within logarithmic factors of the lower bound in

Theorem 3, which is also a lower bound on Apyg)(€,d) since RE C BN(f3); thus, this inherited
lower bound on Ay g) (€, d) is also sometimes tight to within logarithmic factors when j3 is near 0.

Tsybakov noise: The case of Tsybakov noise is slightly more involved than the above. In this
case, fix any a € [1,00), a € (0, 1). Since the upper bound in Theorem 5 already matches the lower
bound up to logarithmic factors when o € (0, 1/2], it suffices to focus on the case @ € (1/2,1). In
this case, for v € (0, 1], let D;(7y) denote the set of all P; € TN(a/v'~%, a) with P;,(X; x V) = 1,
foreachi € {1,2}. Also let D;(0) denote the set of all probability measures P; with P;(X; x)) = 1,
for each i € {1,2}. Again, for any P € TN(a, ), P(-) = P(X; x Y)P(-|X1 x V) + P(Xs x
V)P(:|Xy x V), and for any i € {1,2} with P(X; x }) > 0, P(- x Y|X; x )) is supported only
in A;, and n(-; P(:|X; x )) = n(-; P) on A&;, so that for any ¢ > 0,

P ({x iz PO1XG x V) —1/2] <t} % y‘x,- X y)

1

= by WXt n; P)—1/2] <t} <))

1/(1-a)
19/0-0) _ (1 _ g)(2a)2/(1-2) (‘1>1_> saf(1-a)

= P(X; xY) PX; xY

Also, since f5, € C, and n(-; P(:|X; x Y)) = n(-; P) on X;, we can take fJ*D(-|Xixy) (x) = fp(x) for
every x € X}, so that there exists a version of f;(.‘ XixY) contained in C. Together, these imply that
P(-|X; x V) € D;j(P(X; x Y)). We therefore have that VP € TN(a, a), P = yP; + (1 — ) P, for
some y € [0,1], P; € Dy(7), and P» € Da(1 — ): thatis, TN(a, ) C D, for D as in Lemma 46
(with respect to these definitions of D;(+)). Therefore, Lemma 46 implies that Ve, € (0, 1),

ATN(a,a) (57 6) < A]D)(Ea 5)

€ 0 € 4]
< S — = | Ay (e _ - . (68
~ ’YSG%I?” max{ 1,(y—e/8)V0 <2<’Y n 8/8)7 3> » 32 (1—y—¢/8)V0 <2<1 — Tt 5/8)’ 3)} (68)

First note that, for the case v < £/4, we trivially have

€ ) € ) 1)
A ¢ %) <A ——— %) <A (1) =
1’(7_5/8)V0<2(’y+5/8)’3> = 1’°<2(7+a/4)’3> = 1’°< ’3) 0,
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and similarly for the case v > 1 — ¢/4, we have Ay (1__./8)v0 (m, %) =0.

For the remaining cases, for any v € (0, 1], since every P; € D;(y) has fp. € C, and every
h € C\ C, has h(z) = —1 for every x € A&j, and the all-negative function z — —1 is contained in
C,, and P;(X; x ) = 1, without loss we can take fp. € C;. Together with the definition of Di (),
we have that D;(y) is contained in the set of probability measures P; satisfying the Tsybakov noise
condition with respect to the hypothesis class C;, with parameters w%a and «. Therefore, since the

star number and VC dimension of C; are both d, Theorem 5 implies that for any v € (¢/4, 1],'8

€ o )
A S —— - =
bl (2(v+€/8)’ 3> S (37’ 3)

2 2—2a
a v\ 22 d 5 (1 d
< = - polyl — | = - - polyl — .
~ (fyl—a> <€> d-polylog (56) “\z @ polylog €d

Similarly, since the star number of Cs is s — d and the VC dimension of C is 1, Theorem 5 implies
that for any v € [0,1 — ¢/4),

A I A R, e 9
2lv=e/8\ 91 =7+ ¢/8)'3) = "2UM2 31 =4)3
2 ;1 _\2-2 aar1 2a—1
a 11—~ : (1—y)/*(1-9) 1
< — _
~ ((1 —’Y)l_a> < € ) e {5 d al/ee polylog )
_ ) 1 2—2a . 1 2a0—1 1
<a® |- min § 8, ——— polylog =)
€ al/ae €

Plugging this into (68), we have that

) 1 2—2a 1 2a0—1 d
< - i - —_
ArN(a,0)(E,0) Sa <6> max < min {5, al/ae} ,d » polylog <55) :

As claimed, this is within logarithmic factors of the lower bound in Theorem 5 (for 1/2 < o < 1,
a>4,¢¢€(0,1/(24a'/*)), and § € (0,1/24]), so that, combined with the tightness (always) for
the case 0 < o < 1/2, we may conclude that the lower bounds in Theorem 5 are sometimes tight
to within logarithmic factors.

Benign noise: The case of benign noise proceeds analogously to the above. Since BE(0) = RE,
tightness of the lower bound for the case ¥ = 0 (up to constant factors) has already been addressed
above (supposing we include the lower bound from Theorem 3 as a lower bound on Apg,) (€,9)
to strengthen the lower bound in Theorem 7). For the remainder, we suppose v € (0,1/2). For
v € [0,1], let D;(y) denote the set of all P, € BE(v/(y V 2v)) with P;(X; x YV) = 1, for each
i € {1,2}. Again, forany P € BE(v), P(:) = P(X1 X Y)P(:|X1 x V) + P(X2 x Y)P(:|X2 x Y),
and for any ¢ € {1,2} with P(X; x )) > 0, P(- x Y|X; x Y) is supported only in A;, and
n(; P(-|X; x Y)) = n(-; P) on X, so that we can take f;(-mxy)(x) = fp(x) for every x € Aj;

18. Recall that, as mentioned in Section 5, the upper bounds on the label complexities stated in Section 5 hold without
the stated restrictions on the values ¢, € (0, 1) and a.
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thus, there is a version of f;(.‘ XixY) contained in C. Furthermore,

1
erP('|Xi><y)(fI§(-|Xi><y)) = mp ((z,y) : fp(x) # yand z € A;)
1

< WP((QT,,’U) L fp(r) #y) < 2

v

(X x V)
Also, since every x € X has f5 v . y) () = fp(x) = sign(2n(x; P) — 1) = sign(2n(z; P(-|X; x
Y)) — 1), we have P((z,v) : fl*v(-\xixy)(m) = ylzr € X;) > 1/2, so that erP(-\Xixy)(f;D(.mxy)) <
1/2. Together, these imply that P(-|X; xY) € D;(P(X;x))). We therefore have that VP € BE(v),
P =~P; + (1 — )P, for some v € [0,1], P, € D1(7), and P, € Dy(1 — ~): that is, BE(v) C D,
for D as in Lemma 46 (with respect to these definitions of I);(-)). Therefore, Lemma 46 implies that
Ve, 0 € (0,1),

ABE(V) (57 5) < AID)(57 5)

€ o € d
< A = 2} A = 2.
~ ’YSGI[JOI’)H max { 1,("{—6/8)\/0 <2(7 + 5/8), 3> ? 2,(1—’7—6/8)V0 (2(1 _ "}’ + 5/8)’ 3> } (69)

First note that, as above, for the case v < £/4, we trivially have

€ 0 € 0 )
A — | <A — | <A 1, -] =
1,(y—¢/8)V0 (2(7 T e/8)’ 3> <A1 (2(7 T o) 3> <A1 ( ; 3> 0,

and similarly for the case v > 1 — /4, we have Ao (1—y—c/8)v0 (m, %) =0.

For the remaining cases, for any v € (0, 1], since every P; € D;(v) has f5, € C, and every
h € C\ C,; has h(x) = —1 for every = € Xj, and the all-negative function z — —1 is contained in
C;, and P;(X; x V) = 1, without loss we can take fE, € C;. Together with the definition of D;(y),
we have that D;(y) is contained in the set of probability measures P; satisfying the benign noise
condition with respect to the hypothesis class C;, with parameter % A % Therefore, since the star

number and VC dimension of C; are both d, Theorem 7 implies that for any v € (¢/4,1],"°

) bl )2 (2 o2

2 d
< <I/2 V 1> d - polylog () .
€ ed

Similarly, since the star number of Cs is s — d and the VC dimension of Cs is 1, Theorem 7 implies
that for any v € [0,1 — ¢/4),

A R R, e 9
2,1—’)/—8/8 2(1 _ ’Y + 8/8)7 3 f— 2,(1—’)/)/2 3(1 _ ’)/)’ 3

< (M + min {5 —d, i}) polylog (;) < (Zj v min {5, i}) polylog (515) .

19. Again, as mentioned in Section 5, the restrictions on €, § stated in Theorem 7 are only required for the lower bounds.
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Plugging these into (69), we have that for ¢ € (0, v),

2 1 d
BE(v) (6’ 5) ~ <52 min {57 e }) polylog (65) .

Again, this is within logarithmic factors of the lower bound in Theorem 7 (for ¢ € (0, (1 — 2v)/24)
and 0 € (0,1/24]), so that we may conclude that this lower bound is sometimes tight to within
logarithmic factors when v is not near 0 (specifically, when € < v). For v < ¢, the above implies

Agg@) (&, 6) < max {d, min {5, 1}} polylog <d> ,
€ 0]

which is within logarithmic factors of the lower bound in Theorem 3 (for ¢ € (0,1/9) and ¢ €
(0,1/3)). Since RE C BE(v), this is also a lower bound on A, (€, 9). Thus, in this case, we may
conclude that this inherited lower bound on Agg,) (€,9) is sometimes tight to within logarithmic
factors, for v near 0 (specifically, when € > v).
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