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Abstract

This work establishes a new upper bound on the worst-case number of labeled samples
sufficient for PAC learning in the realizable case, if the learning algorithm is allowed de-
pendence on the data distribution, or an additional pool of unlabeled samples. The bound
matches known lower bounds up to constant factors. This resolves a long-standing open
problem on the sample complexity of distribution-dependent PAC learning. We also discuss
potential avenues for extension to distribution-independent learning. The technique and
analysis build on a recent breakthrough by Hans Simon.

1. Introduction

Probably approximately correct learning (or PAC learning; Valiant, 1984) is a classic cri-
terion for supervised learning, which has been the focus of much research in the past three
decades. The objective in PAC learning is to produce a classifier that, with probability at
least 1 − δ, has error rate is at most ε. To qualify as a PAC learning algorithm, it must
satisfy this guarantee for all possible target concepts in a given family, under all possible
data distributions. To achieve this objective, the learning algorithm is supplied with a
number m of i.i.d. training examples (data points), along with the corresponding correct
classifications. One of the central questions in the study of PAC learning is determining
the minimum number M(ε, δ) of training examples necessary and sufficient such that there
exists a PAC learning algorithm requiring at most M(ε, δ) samples (for any given ε and δ).
This quantity M(ε, δ) is known as the sample complexity.

Determining the sample complexity of PAC learning is a long-standing open problem.
There have been upper and lower bounds established for decades, but they differ by a
logarithmic factor. It is widely believed that this logarithmic factor gap can be removed
for certain well-designed learning algorithms, and attempting to prove this has been the
subject of much effort. Simon (2015) has very recently made an enormous leap forward
toward resolving this issue. Specifically, he proves that a simple ensemble-based learning
algorithm is able to reduce this factor to a very slowly-growing function. However, that
work does not quite completely resolve the gap, so that determining the optimal sample
complexity remains an open problem.

The present work makes progress on this problem by completely eliminating the loga-
rithmic factor, but under a variant of the setting in which the learning algorithm may have
direct dependence on the data distribution, or alternatively, has access to a somewhat larger
pool of unlabeled data (i.e., semi-supervised learning). In particular, this resolves the gap
between the best previously-known upper and lower bounds for that setting, thus establish-
ing a precise expression for the optimal sample complexity of distribution-dependent PAC
learning (up to numerical constant factors).
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While establishing sharp worst-case sample complexity bounds for distribution-dependent
(or semi-supervised) PAC learning is certainly interesting in its own right, this work may
also be useful toward establishing optimal sample complexity bounds for distribution-
independent learning as well. For instance, the techniques employed here may potentially
have distribution-independent (and strictly supervised) variants for which the stated sam-
ple complexity guarantees remain valid. Additionally, we note that a weakened version
of a conjecture of Ben-David, Lu, and Pál (2008) (which we discuss in Section 6) states
that allowing dependence on the data distribution can improve the sample complexity by
at most a numerical constant factor. If this conjecture is correct, the present work would
establish optimal sample complexity bounds for (distribution-independent) PAC learning
as well (up to numerical constant factors). Indeed, it follows from the present work that
this (weakened) conjecture is equivalent to the classic conjecture that the lower bounds of
Blumer, Ehrenfeucht, Haussler, and Warmuth (1989) and Ehrenfeucht, Haussler, Kearns,
and Valiant (1989) on the sample complexity of distribution-independent PAC learning are
generally sharp up to numerical constant factors (see e.g., Warmuth, 2004, for discussion of
this conjecture).

2. Notation

We begin by introducing some basic notation essential to the discussion. Fix a nonempty
set X , called the instance space; we suppose X is equipped with a σ-algebra, defining the
measurable subsets of X . Also denote by Y = {−1,+1}, called the label space. A classifier
is any measurable function h : X → Y. Fix a nonempty set C of classifiers, called the
concept space. To focus the discussion on nontrivial cases,1 we suppose |C| ≥ 3; other than
this, the results in this article will be valid for any choice of C.

In the learning problem, there is a probability measure P over X , called the data distri-
bution, and a sequence X1(P),X2(P), . . . of independent P-distributed random variables,
called the unlabeled examples (or unlabeled data); for m ∈ N, also define X1:m(P) =
{X1(P), . . . ,Xm(P)}, and for completeness denote X1:0(P) = {}. There is also a spe-
cial element of C, denoted f⋆, called the target function. For any sequence S = {x1, . . . , xk}
in X , denote by (S, f⋆(S)) = {(x1, f⋆(x1)), . . . , (xk, f

⋆(xk))}. For any probability measure
P over X , and any classifier h, denote by erP (h; f

⋆) = P (x : h(x) 6= f⋆(x)). A learning
algorithm A is a map,2 mapping any sequence {(x1, y1), . . . , (xm, ym)} in X×Y (of arbitrary
length m ∈ N ∪ {0}) to a classifier h : X → Y (not necessarily in C).

Definition 1 For any ε, δ ∈ (0, 1), the distribution-free sample complexity of distribution-
dependent (ε, δ)-PAC learning, denoted M̃(ε, δ), is defined as the smallest m ∈ N ∪ {0}
such that, for every possible data distribution P, there exists a learning algorithm AP such
that, ∀f⋆ ∈ C, denoting ĥ = AP((X1:m(P), f⋆(X1:m(P)))),

P

(

erP

(

ĥ; f⋆
)

≤ ε
)

≥ 1− δ. (1)

1. The sample complexities for |C| = 1 and |C| = 2 are already quite well understood in the literature,
the former having sample complexity 0, and the latter having sample complexity either 1 or Θ( 1

ε
ln 1

δ
)

(depending on whether the two classifiers are exact complements or not).
2. We also admit randomized algorithms, where ∀S ∈ (X ×Y)m, the (random) value of A(S) is independent

of all Xi(P ).
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If no such m exists, we define M̃(ε, δ) = ∞.

Definition 1 is our primary object of study in this work. Note that the order of quan-
tifiers in this definition allows that, for each possible choice of P, we can find a different
algorithm AP to satisfy the “probably approximately correct” guarantee (1) (though it
must still satisfy this guarantee for all choices of f⋆ ∈ C). This may be interpreted as
allowing distribution-dependence in the learning algorithm: that is, we may intuitively
think of the collection {AP : P is a prob. measure} together as a distribution-dependent
learning algorithm. For any such distribution-dependent learning algorithm AP , we say AP

achieves a sample complexity M̃(ε, δ) if, for every P, every f⋆ ∈ C, and every m ≥ M̃(ε, δ),
the classifier ĥ = AP((X1:m(P), f⋆(X1:m(P)))) satisfies (1). Thus, M̃(ε, δ) can equiva-
lently be defined as the smallest (integer-valued) sample complexity M̃(ε, δ) achievable by
distribution-dependent learning algorithms.

We require a few additional definitions before proceeding. For any sequence S =
{(x1, y1), . . . , (xk, yk)} in X × Y, denote by C[S] = {h ∈ C : ∀(x, y) ∈ S, h(x) = y},
referred to as the set of classifiers consistent with S. Following Vapnik and Chervonenkis
(1971), we say a sequence {x1, . . . , xk} in X is shattered by C if ∀y1, . . . , yk ∈ Y, ∃h ∈ C such
that ∀i ∈ {1, . . . , k}, h(xi) = yi: that is, there are 2k distinct classifications of {x1, . . . , xk}
realized by classifiers in C. The Vapnik-Chervonenkis dimension (or VC dimension) of C
is then defined as the largest integer k for which there exists a sequence {x1, . . . , xk} in X
shattered by C; if no such largest k exists, the VC dimension is said to be infinite. We
denote by d the VC dimension of C. This quantity is of fundamental importance in char-
acterizing the sample complexity of PAC learning. In particular, it is well known that the
distribution-free sample complexity (either with or without distribution-dependence in the
learning algorithm) is finite for any ε, δ ∈ (0, 1) if and only if d < ∞ (Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989; Benedek and Itai, 1991; Kulkarni, 1989; Devroye, Györfi,
and Lugosi, 1996); for simplicity of notation, for the remainder of this article we suppose
d < ∞; furthermore, note that our assumption of |C| ≥ 3 implies d ≥ 1.

We adopt a common variation on big-O asymptotic notation, used in much of the learn-
ing theory literature. Specifically, for functions f, g : (0, 1)2 → [0,∞), we let f(ε, δ) =
O(g(ε, δ)) denote the assertion that ∃ε0, δ0 ∈ (0, 1) and c0 ∈ (0,∞) such that, ∀ε ∈ (0, ε0),
∀δ ∈ (0, δ0), f(ε, δ) ≤ c0g(ε, δ); however, we also require that the values ε0, δ0, c0 in this
definition be numerical constants, meaning that they are independent of C and X . For
instance, this means c0 cannot depend on d. We equivalently write f(ε, δ) = Ω(g(ε, δ)) to
assert that g(ε, δ) = O(f(ε, δ)). Finally, we write f(ε, δ) = Θ(g(ε, δ)) to assert that both
f(ε, δ) = O(g(ε, δ)) and f(ε, δ) = Ω(g(ε, δ)) hold. We also sometimes write O(g(ε, δ)) in an
expression, as a place-holder for some function f(ε, δ) satisfying f(ε, δ) = O(g(ε, δ)): for
instance, the statement N(ε, δ) ≤ d + O(Log(1/δ)) expresses that ∃f(ε, δ) = O(Log(1/δ))
for which N(ε, δ) ≤ d+ f(ε, δ). Also, for any value z ≥ 0, define Log(z) = ln(max{z, e}).

As is commonly required in the learning theory literature, we adopt the assumption that
any quantity appearning in a probability or expectation expression is indeed measurable.
For our purposes, this comes into effect only in the application of classic generalization
bounds for sample-consistent classifiers (Lemma 4 below). See Blumer, Ehrenfeucht, Haus-
sler, and Warmuth (1989) and van der Vaart and Wellner (2011) for discussion of conditions
on C sufficient for this measurability assumption to hold.
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3. Background

Our objective in this work is to establish sharp sample complexity bounds. As such, we
should first review the known lower bounds on M̃(ε, δ). A basic lower bound of 1−ε

ε ln
(

1
δ

)

was established by Blumer, Ehrenfeucht, Haussler, and Warmuth (1989) for 0 < ε < 1/2
and 0 < δ < 1. Although this lower bound was stated in that work as a lower bound
on the sample complexity of distribution-independent learning algorithms, its proof fixes a
particular distribution P and reasons only about worst-case performance over the choice of
f⋆ ∈ C. The lower bound therefore also applies to M̃(ε, δ) as well. A second lower bound
of d−1

32ε was supplied by Ehrenfeucht, Haussler, Kearns, and Valiant (1989), for 0 < ε ≤ 1/8
and 0 < δ ≤ 1/100. Again, although that work studied distribution-independent learning
algorithms, the proof of this lower bound fixes a particular distribution P and discusses only
the worst-case choice of f⋆ ∈ C while holding P fixed. Thus, this too supplies a lower bound
on M̃(ε, δ). Taken together, these results imply that, for any ε ∈ (0, 1/8] and δ ∈ (0, 1/100],

M̃(ε, δ) ≥ max

{

d− 1

32ε
,
1− ε

ε
ln

(

1

δ

)}

= Ω

(

1

ε

(

d+ Log

(

1

δ

)))

. (2)

This lower bound is also complemented by classic upper bounds on the sample complex-
ity. In particular, Vapnik (1982) and Blumer, Ehrenfeucht, Haussler, and Warmuth (1989)
established an upper bound of

M̃(ε, δ) = O

(

1

ε

(

dLog

(

1

ε

)

+ Log

(

1

δ

)))

. (3)

They prove that this bound in fact holds for a distribution-independent learning algorithm:
namely, any algorithm that returns a classifier h ∈ C[(X1:m(P), f⋆(X1:m(P)))], also known
as a sample-consistent learning algorithm (or empirical risk minimization algorithm). A
sometimes-better upper bound was established by Haussler, Littlestone, and Warmuth
(1994):

M̃(ε, δ) = O

(

d

ε
Log

(

1

δ

))

. (4)

This bound is achieved by a modified variant of the one-inclusion graph prediction algorithm,
a learning algorithm also proposed by Haussler, Littlestone, and Warmuth (1994).

In very recent work, Simon (2015) produced a breakthrough insight. Specifically, by
analyzing a classifier based on a simple majority vote among classifiers consistent with
distinct subsets of the training sample (X1:m(P), f⋆(X1:m(P))), Simon (2015) established
that, for any choice of K ∈ N,

M̃(ε, δ) = O

(

22K
√
K

ε

(

d log(K)

(

1

ε

)

+K + log

(

1

δ

))

)

,

where log(K)(x) is the K-times iterated logarithm: log(0)(x) = max{x, 1} and log(K)(x) =
max{log2(log(K−1)(x)), 1}. In particular, a natural choice would be K ≈ log∗

(

1
ε

)

,3 which

3. The function log∗(x) is the iterated logarithm: the smallest K ∈ N ∪ {0} for which log(K)(x) ≤ 1. It is
an extremely slowly growing function of x.
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(one can show) optimizes the asymptotic dependence on ε in the above bound,4 yielding

M̃(ε, δ) = O

(

1

ε
2O(log∗(1/ε))

(

d+ Log

(

1

δ

)))

. (5)

Note that there is a range of ε, δ, and d values for which this bound is strictly bet-
ter than both (3) and (4) (i.e., where Log(1/δ) ≪ dLog(1/ε)/(22 log∗(1/ε)

√

log∗(1/ε)) and
22 log

∗(1/ε)
√

log∗(1/ε) ≪ min{Log(1/δ), d}). However, it still does not quite match the lower
bound (2).

There have also been many special-case analyses, studying restricted types of concept
spaces C for which the above gaps can be closed (e.g., Auer and Ortner, 2007; Darnstädt,
2015; Hanneke, 2015). However, these special conditions do not include many of the most-
commonly studied concept spaces, such as linear separators and multilayer neural networks.
There have also been a variety of studies that, in addition to restricting to specific concept
spaces C, also introduce strong restrictions on the data distribution P, and establish an
upper bound of the same form as the lower bound (2) under these restrictions (e.g., Long,
2003; Giné and Koltchinskii, 2006; Bshouty, Li, and Long, 2009; Hanneke, 2009, 2015;
Balcan and Long, 2013). However, there are many interesting classes C and distributions
P for which these results do not imply any improvements over (3). Thus, in the present
literature, there persists a gap between the lower bound (2) and the minimum of all of the
known upper bounds (3), (4), and (5) applicable to the general case of an arbitrary concept
space of a given VC dimension d (under arbitrary data distributions).

We note that all of the above upper bounds, (3), (4), and (5), were established for
distribution-independent learning algorithms, and are therefore also bounds on the sample
complexity of distribution-independent learning. However, the best known general upper
bounds on the distribution-free sample complexity of distribution-dependent learning offer
improvements over the above (in the general case of arbitrary C of VC dimension d) only
in constant factors: for instance, a construction of Bshouty, Li, and Long (2009) reveals
that for any given d, there exist distributions P over R

d for which, with C the class of
homogeneous linear separators (which has VC dimension d; Cover, 1965), the distribution-
dependent sample complexity bounds established by Benedek and Itai (1991) and Bshouty,
Li, and Long (2009) for distribution-dependent learning algorithms are no smaller than the
upper bound (3), aside from numerical constant factors.

In the present work, we establish a new upper bound for a distribution-dependent learn-
ing algorithm, which holds for any concept space C, and which improves over all of the above
upper bounds in its joint dependence on ε,δ, and d. In particular, it is optimal, in the sense
that it matches the lower bound (2) up to numerical constant factors. This work thus re-
solves a long-standing open problem, by establishing the precise form of the optimal sample
complexity, up to numerical constant factors.

4. In general, the entire form of the bound is optimized (up to numerical constant factors) by choosing
K = max

{

log∗
(

1
ε

)

− log∗
(

1
d
log

(

1
δ

))

+ 1, 1
}

.
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4. Main Result

For simplicity of the analysis, we begin by supposing the algorithm has direct access to the
data distribution P. In Section 5 below, we discuss a simple technique for relaxing this to
suppose only that it has access to a pool of P-distributed unlabeled data.

4.1 Sketch of the Approach

Before getting into the formal details, we first outline the high-level motivation for this
algorithm.

The general approach used here builds on an argument of Simon (2015), which itself
has roots in the analysis of sample-consistent learning algorithms by Hanneke (2009). The
essential idea is that, if two classifiers are each consistent with respective distinct labeled
training samples, we can analyze the probability that they both make a mistake on a random
point by bounding the error rate of the first classifier under the distribution P, and bounding
the error rate of the second classifier under the conditional distribution given that the first
classifier makes a mistake. Then, if the first classifier’s error rate is larger than our desired
bound, we can argue that at least a certain number of points in the second training sample
are contained in that classifier’s error region, and we can then bound the conditional error
rate of the second classifier in terms of the number of such points. Multiplying these two
bounds then yields a bound on the probability they both make a mistake. We then apply
this reasoning to three classifiers, bounding the probability that any two of them make a
mistake; combined with the union bound, the sum of these three resulting bounds provides
an upper bound on the error rate of the majority vote of the three classifiers.

The original analysis of Simon (2015) applied this reasoning, together with classic VC
bounds, with only the constraint that the three classifiers be consistent with their respective
samples, and otherwise allowed them to be chosen arbitrarily. In the present work, we
instead suppose that the first classifier in each pair in the above argument is produced by a
recursive call to our proposed algorithm. Thus, we are able to use our refined bound, taken
as an inductive hypothesis, for the bound on the error rate of the first classifier in each pair,
which thereby refines the final bound as desired.

However, in order to obtain a bound on the conditional error rate of the second classifier
given the error region of the first, based on classic VC bounds, we need to ensure that the
second classifier is indeed a sample-consistent element of C. We thus have a constraint:
among all pairings of these three classifiers, at least one of the two classifiers should be
a recursive call to the proposed algorithm, and at least one of the two classifiers should
be a sample-consistent element of C. One can easily see that, to satisfy this requirement,
at least one of the three classifiers must be both a sample-consistent element of C and
the result of a recursive call to the proposed algorithm. However, majority vote classifiers
are not themselves guaranteed to be representable as elements of C. To resolve this, we
project the majority vote classifier onto the set of sample-consistent elements of C, which
at most doubles the error rate. We emphasize that this projection step is the only use of
distribution-dependence in the entire algorithm.
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4.2 Formal Details

For any three values y1, y2, y3 ∈ Y, define the majority function: Majority(y1, y2, y3) =
sign(y1 + y2 + y3) = 21[y1 + y2 + y3 ≥ 0] − 1. For any set A, function f : A → [0,∞), and
value γ ≥ 0, define the set of γ-near minimizers of f :

argmin
a∈A

γf(a) =

{

a ∈ A : f(a) ≤ inf
a′∈A

f(a′) + γ

}

.

Additionally, for any m ∈ N∪{0} and δ ∈ (0, 1), let γ(m, δ) be any value in (0,∞) satisfying
γ(m, δ) ≤ 1

3(m+1)

(

d+ ln
(

12
δ

))

. Finally, let c0 be any real value satisfying e7 ≤ c0 ≤ e176.

Now consider the following recursive algorithm.5

Algorithm: A
(δ)
P (S)

0. If |S| ≤ c0(d+ ln(12/δ))
1. Return any ĥ ∈ C[S]
2. Let S1 denote the first ⌊|S|/2⌋ elements of S, S2 the remaining ⌈|S|/2⌉ elements

3. Let ĥ1 = A
(δ/6)
P (S1), ĥ2 = A

(δ/6)
P (S2), and ĥ3 is an arbitrary element of C[S]

4. Return any ĥ ∈ argmin
h∈C[S]

γ(|S|,δ)P(x : h(x) 6= Majority(ĥ1(x), ĥ2(x), ĥ3(x)))

Theorem 2 For every ε, δ ∈ (0, 1),

M̃(ε, δ) = O

(

1

ε

(

d+ Log

(

1

δ

)))

.

In particular, the above distribution-dependent algorithm A
(δ)
P achieves a sample complexity

of the form expressed on the right hand side.

Combined with (2), this immediately implies the following corollary.

Corollary 3

M̃(ε, δ) = Θ

(

1

ε

(

d+ Log

(

1

δ

)))

.

4.3 Proof of Theorem 2

The following classic result will be needed in the proof. It is implied by a result of Vapnik
(1982), and was obtained via a direct proof by Blumer, Ehrenfeucht, Haussler, andWarmuth
(1989). The version stated here features slightly smaller constant factors, due to Anthony
and Bartlett (1999).

5. We will suppose that the steps left partially ambiguous in this definition (i.e., the choices of ĥ in Step 1,
ĥ3 in Step 3, and ĥ in Step 4) are performed in a way that depends only on the input S (and δ, P), and

possibly some “internal” randomness (independent from all other Xi(P )); thus, A
(δ)
P

satisfies the require-
ments of a learning algorithm discussed in Section 2. In particular, when S = (X1:m(P), f⋆(X1:m(P))),
in Step 3, the classifier ĥ1 is independent from the sample S2, and ĥ2 is independent from S1.

7



Steve Hanneke

Lemma 4 For any δ ∈ (0, 1), m ∈ N, f⋆ ∈ C, and any probability measure P over X ,
letting Z1, . . . , Zm be independent P -distributed random variables, with probability at least
1− δ, every h ∈ C[{(Zi, f

⋆(Zi))}mi=1] satisfies

erP (h; f
⋆) ≤ 2

m

(

dLog

(

2em

d

)

+ Log

(

2

δ

))

.

We are now ready for the proof of Theorem 2.
Proof of Theorem 2 Fix any f⋆ ∈ C and probability measure P over X . We will prove
by induction that, for any m′ ∈ N, and any δ′ ∈ (0, 1), with probability at least 1− δ′, the

classifier ĥm′,δ′ = A
(δ′)
P ((X1:m′(P), f⋆(X1:m′(P)))) satisfies

erP(ĥm′,δ′ ; f
⋆) ≤ 1

m′ + 1

(

358d + 97 ln

(

12

δ′

))

. (6)

First, as a base case, note that for any m′ ∈ N and δ′ ∈ (0, 1) with m′ ≤ c0(d + ln(12/δ′)),

A
(δ′)
P ((X1:m′(P), f⋆(X1:m′(P)))) terminates in Step 1, in which case Lemma 4 implies that

with probability at least 1− δ′, the returned classifier ĥm′,δ′ satisfies

erP(ĥm′,δ′ ; f
⋆) ≤ 2

m′

(

dLog

(

2em′

d

)

+ Log

(

2

δ′

))

≤ 2

m′

(

dLog

(

2ec0 (d+ ln(12/δ′))

d

)

+ Log

(

2

δ′

))

=
2

m′

(

dLog

(

e−3c0

(

2e4 +
2e4

d
ln

(

12

δ′

)))

+ Log

(

2

δ′

))

≤ 2

m′

(

d ln(e−3c0(2e
4 + e)) +

(

1 + 2e3
)

ln

(

12

δ′

))

≤ 1

m′

(

357d + 96 ln

(

12

δ′

))

,

where the inequality on the second-to-last line is due to Lemma 8 in Appendix A. If m′ ≥
357, then the expression on this last line is at most

1

m′ + 1

(

358d + 97 ln

(

12

δ′

))

,

and otherwise, ifm′<357, then we trivially have erP(ĥm′,δ′ ; f
⋆)≤1< 1

m′+1

(

358d+97 ln
(

12
δ′

))

.
Also note that, for any m ∈ N and δ ∈ (0, 1) with m ≤ c0(d + ln(12/δ)), every m′ ∈ N

and δ′ ∈ (0, 1) with m′ ≤ m and δ′ ≤ δ also satisfy m′ ≤ c0(d + ln(12/δ′)). Together we
have that, for any m ∈ N and δ ∈ (0, 1) with m ≤ c0(d + ln(12/δ)), for every m′ ∈ N and
δ′ ∈ (0, 1) with m′ ≤ m and δ′ ≤ δ, with probability at least 1− δ′, (6) holds.

Now take as an inductive hypothesis that, for some m ∈ N and δ ∈ (0, 1) with m >
c0(d+ ln(12/δ)), for every m′ ∈ N and δ′ ∈ (0, 1) with m′ < m and δ′ < δ, with probability
at least 1 − δ′, (6) is satisfied. Let S1, S2, ĥ1, ĥ2, and ĥ3 be as in the definition of the

algorithm A
(δ)
P (S), with S = (X1:m(P), f⋆(X1:m(P))). In particular, note that m ≥ 2, so

that S1 and S2 are both nonempty, and max{|S1|, |S2|} < m. Furthermore, by definition
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of A
(δ/6)
P , we have ĥ1 ∈ C[S1], ĥ2 ∈ C[S2], and ĥ3 ∈ C[S]. For each i ∈ {1, 2, 3}, define

Ri = {x ∈ X : ĥi(x) 6= f⋆(x)}, the error region of ĥi.
Note that S1 = (X1:⌊m/2⌋(P), f⋆(X1:⌊m/2⌋(P))). Also note that (by the i.i.d. assumption)

S2 is distributionally equivalent to (X1:⌈m/2⌉(P), f⋆(X1:⌈m/2⌉(P))). Thus, by the inductive
hypothesis, for each i ∈ {1, 2}, there is an event Ei of probability at least 1− δ/6, on which

P(Ri) ≤
1

|Si|+ 1

(

358d + 97 ln

(

72

δ

))

≤ 1

⌊m/2⌋

(

358d+ 97 ln

(

72

δ

))

. (7)

Next, fix any i ∈ {1, 2} and denote by ī the element of {1, 2} not equal to i. In
particular, note that every j ∈ {2, 3} with j > i has ĥj ∈ C[Sī]. Denote by Nī = |{(x, y) ∈
Sī : ĥi(x) 6= y}|, and let (Zī,1, f

⋆(Zī,1)), . . . , (Zī,Nī
, f⋆(Zī,Nī

)) denote the subsequence of Sī

for which Zī,t ∈ Ri, t ∈ {1, . . . , Nī}. Note that Zī,1, . . . , Zī,Nī
are conditionally independent

given ĥi and Nī, each with conditional distribution P(·|Ri) (if Nī > 0). Thus, applying
Lemma 4 under the conditional distribution given ĥi and Nī, combined with the law of
total probability, we have that on an event E′

i of probability at least 1− δ/6, if Nī > 0, then

every h ∈ C[{(Zī,t, f
⋆(Zī,t))}

Nī

t=1] satisfies

erP(·|Ri)(h; f
⋆) ≤ 2

Nī

(

dLog

(

2eNī

d

)

+ Log

(

12

δ

))

.

Furthermore, we have C[{(Zī,t, f
⋆(Zī,t))}

Nī

t=1] ⊇ C[Sī], so that every j ∈ {2, 3} with j > i

has ĥj ∈ C[{(Zī,t, f
⋆(Zī,t))}Nī

t=1]. Thus, on the event E′
i, if Nī > 0, every such j has

P(Ri ∩Rj) = P(Ri)P(Rj |Ri) = P(Ri)erP(·|Ri)(ĥj ; f
⋆)

≤ P(Ri)
2

Nī

(

dLog

(

2eNī

d

)

+ Log

(

12

δ

))

. (8)

Additionally, by a Chernoff bound (applied under the conditional distribution given ĥi) and
the law of total probability, there is an event E′′

i of probability at least 1− δ/6, on which,
if P(Ri) ≥ 8

⌊m/2⌋ ln
(

6
δ

)

, then

Nī ≥ P(Ri)|Sī|/2 ≥ P(Ri)⌊m/2⌋/2.
This also means that, on E′′

i , if P(Ri) ≥ 8
⌊m/2⌋ ln

(

6
δ

)

, then P(Ri)⌊m/2⌋/2 > 0, so that
Nī > 0.

Combining this with (7) and (8), and noting that x 7→ 1
xLog(cx) is nonincreasing on

(0,∞) (for any fixed c > 0), we have that on Ei ∩ E′
i ∩ E′′

i , if P(Ri) ≥ 8
⌊m/2⌋ ln

(

6
δ

)

, then

P(Ri ∩Rj) ≤
4

⌊m/2⌋

(

dLog

(

eP(Ri)⌊m/2⌋
d

)

+ Log

(

12

δ

))

≤ 4

⌊m/2⌋

(

dLog

(

e
(

358d + 97 ln
(

72
δ

))

d

)

+ Log

(

12

δ

)

)

≤ 4

⌊m/2⌋

(

dLog

(

97

(

358e

97
+ e ln(6) +

e

d
ln

(

12

δ

)))

+ Log

(

12

δ

))

≤ 4

⌊m/2⌋

(

d ln (358e+ 97e ln(6) + 97e) + 2 ln

(

12

δ

))

,

9
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where this last inequality is due to Lemma 8 in Appendix A. Additionally, if P(Ri) <
8

⌊m/2⌋ ln
(

6
δ

)

, then monotonicity of probability measures implies

P(Ri ∩Rj) ≤ P(Ri) <
8

⌊m/2⌋ ln
(

6

δ

)

≤ 4

⌊m/2⌋

(

d ln (358e + 97e ln(6) + 97e) + 2 ln

(

12

δ

))

.

Thus, regardless of the value of P(Ri), on the event Ei ∩ E′
i ∩ E′′

i , we have

P(Ri ∩Rj) ≤
4

⌊m/2⌋

(

d ln (358e + 97e ln(6) + 97e) + 2 ln

(

12

δ

))

.

Next, define the majority vote classifier: ĥMaj(x) = Majority(ĥ1(x), ĥ2(x), ĥ3(x)) (for

all x ∈ X ). Note that for any x ∈ X with ĥMaj(x) 6= f⋆(x), at least two of the values

ĥ1(x), ĥ2(x), ĥ3(x) must differ from f⋆(x): that is, x ∈ (R1 ∩R2) ∪ (R1 ∩R3) ∪ (R2 ∩R3).
Therefore, by the union bound,

erP(ĥMaj; f
⋆) ≤ P(R1 ∩R2) + P(R1 ∩R3) + P(R2 ∩R3).

We therefore have that, on the event
⋂

i∈{1,2} Ei ∩ E′
i ∩ E′′

i ,

erP(ĥMaj; f
⋆) ≤ 12

⌊m/2⌋

(

d ln (358e + 97e ln(6) + 97e) + 2 ln

(

12

δ

))

. (9)

Finally, since {x : ĥm,δ(x) 6= f⋆(x)} ⊆ {x : ĥm,δ(x) 6= ĥMaj(x)} ∪ {x : ĥMaj(x) 6= f⋆(x)},
the union bound implies

erP(ĥm,δ ; f
⋆) = P(x : ĥm,δ(x) 6= f⋆(x)) ≤ P(x : ĥm,δ(x) 6= ĥMaj(x)) + P(x : ĥMaj(x) 6= f⋆(x)).

By definition (in Step 4),

P(x : ĥm,δ(x) 6= ĥMaj(x)) ≤ inf
h∈C[S]

P(x : h(x) 6= ĥMaj(x)) + γ(m, δ),

and since f⋆ ∈ C[S], this is at most P(x : f⋆(x) 6= ĥMaj(x)) + γ(m, δ). Therefore,

erP(ĥm,δ ; f
⋆) ≤ 2P(x : ĥMaj(x) 6= f⋆(x)) + γ(m, δ) = 2erP(ĥMaj; f

⋆) + γ(m, δ). Combining
this with (9) we have that, on the event

⋂

i∈{1,2} Ei ∩E′
i ∩ E′′

i ,

erP(ĥm,δ; f
⋆) ≤ 24

⌊m/2⌋

(

d ln (358e + 97e ln(6) + 97e) + 2 ln

(

12

δ

))

+ γ(m, δ). (10)

Since we are considering a value m > c0(d+ ln(12/δ)) > c0 ln(12e), we have that ⌊m/2⌋ >
m−2
2 >

(

1− 2
c0 ln(12e)

)

m
2 >

(

1− 2
c0 ln(12e)

)

c0 ln(12e)
c0 ln(12e)+1

m+1
2 = c0 ln(12e)−2

c0 ln(12e)+1
m+1
2 . Therefore, the

right hand side of the inequality (10) is at most

c0 ln(12e) + 1

c0 ln(12e) − 2

48

m+ 1

(

d ln (358e + 97e ln(6) + 97e) + 2 ln

(

12

δ

))

+ γ(m, δ).

10
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By a direct calculation of the numerical value of the logarithmic factor, together with the
facts that c0 ≥ e7 and γ(m, δ) ≤ 1

3(m+1)

(

d+ ln
(

12
δ

))

, the above expression is at most

1

m+ 1

(

358d + 97 ln

(

12

δ

))

.

Furthermore, by the union bound, the event
⋂

i∈{1,2} Ei ∩ E′
i ∩ E′′

i has probability at least

1 − δ. Thus, we have succeeded in extending the inductive hypothesis to include m′ = m
and δ′ = δ.

By the principle of induction, we have established the claim that, for every m ∈ N and
δ ∈ (0, 1), with probability at least 1− δ,

erP(ĥm,δ ; f
⋆) ≤ 1

m+ 1

(

358d + 97 ln

(

12

δ

))

. (11)

To complete the proof, we simply note that, for any ε, δ ∈ (0, 1), for any value of m ∈ N of
size at least

⌊

1

ε

(

358d + 97 ln

(

12

δ

))⌋

, (12)

the right hand side of (11) is less than ε, so that A
(δ)
P achieves a sample complexity equal

the expression in (12). In particular, this implies

M̃(ε, δ) ≤ 1

ε

(

358d+ 97 ln

(

12

δ

))

= O

(

1

ε

(

d+ Log

(

1

δ

)))

.

5. Replacing Distribution-Dependence with Unlabeled Data

The algorithm above is stated as a distribution-dependent algorithm. Since arbitrary ac-
cess to the probability measure P is typically considered a strong requirement, it is worth
investigating the nature of the dependence on P actually required by this algorithm. In par-
ticular, in this section we find that it suffices to have an additional number of independent
P-distributed unlabeled samples, a setting known as semi-supervised learning. Specifically,
we note that the dependence on P is isolated to a projection step (Step 4), in which we find
a sample-consistent classifier relatively close to the majority vote classifier. Fortunately,
as discussed above, this does not need to be the closest classifier in C[S], but merely one
whose distance to the majority classifier is within γ(m, δ) of the minimal distance. This
slack enables us to provide the required guarantee (with high probability) by projecting onto
C[S] using L1 distances calculated via the empirical probability measure P̂ based on the
additional unlabeled samples. Thus, we have a distribution-independent semi-supervised
learning algorithm, which still achieves the sample complexity guarantee of Theorem 2
above (aside from a small increase in a constant). We also discuss the number of unlabeled
samples sufficient for this method.

11
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Formally, let X ′
1(P),X ′

2(P), . . . be independent P-distributed random variables (also
independent from all Xi(P )). For any u ∈ N, define X

′
1:u(P) = {X ′

1(P), . . . ,X ′
u(P)}. For

any u ∈ N, any U ∈ X u, and any measurable set A ⊆ X , define

P̂U (A) =
1

u

∑

x∈U

1[x ∈ A],

the empirical probability of A. Now consider the following modification of A
(δ)
P , where U

is a finite sequence of points in X , and S is a finite sequence of points in X × Y (with
C[S] 6= ∅).6

Algorithm: Â
(δ)
U (S)

0. If |S| ≤ c0(d+ ln(12/δ))
1. Return any ĥ ∈ C[S]
2. Let S1 denote the first ⌊|S|/2⌋ elements of S, S2 the remaining ⌈|S|/2⌉ elements

3. Let ĥ1 = Â
(δ/6)
U (S1), ĥ2 = Â

(δ/6)
U (S2), and ĥ3 is an arbitrary element of C[S]

4. Return ĥ = argminh∈C[S] P̂U ({x : h(x) 6= Majority(ĥ1(x), ĥ2(x), ĥ3(x))})

Note that Â
(δ)
U is defined precisely as A

(δ)
P above, except that in Step 4, P is replaced

by P̂U and γ(m, δ) is repalced by 0. The idea is that, if P̂U is within γ(m, δ) of P for all

evaluations of the latter in A
(δ)
P , then Â

(δ)
U will be a valid instantiation of A

(δ)
P . In order to

argue that this is indeed the case (for U = X
′
1:u(P), for a sufficiently large u), we first state

the following lemma. This result is largely based on a well-known generalization of Lemma 4,
due to Vapnik (1982) (along with a complementary result of Bousquet, Boucheron, and
Lugosi, 2004), plus some additional reasoning about the VC dimension of loss regions for
majority vote classifiers based on a result of Vidyasagar (2003). For completeness, we
include a brief derivation of the result in its stated form, starting from the theorem of
Vapnik (1982).

Lemma 5 There is a finite numerical constant c̃1 ≥ 1 such that, for any nonempty set
H of classifiers with VC dimension at most d, for any probability measure P over X , any
γ, δ ∈ (0, 1) and ν ∈ [0, 1], and any u ∈ N satisfying

u ≥ c̃1(ν + γ)

γ2

(

dLog

(

1

γ

)

+ Log

(

1

δ

))

, (13)

with probability at least 1− δ, for every h1, h2, h3 ∈ C such that ∃h′ ∈ H with P(x : h′(x) 6=
Majority(h1(x), h2(x), h3(x))) ≤ ν, the classifier

ĥ = argmin
h∈H

P̂X′
1:u(P)(x : h(x) 6= Majority(h1(x), h2(x), h3(x)))

satisfies

P
(

x : ĥ(x) 6= Majority(h1(x), h2(x), h3(x))
)

≤ inf
h∈H

P (x : h(x) 6= Majority(h1(x), h2(x), h3(x))) + γ.

6. As above, we suppose any partially ambiguous steps are instantiated in a way that depends only on the
input S (and δ, U), and any internal randomness, so that for any U , this is a valid learning algorithm.

12



Sample Complexity

Proof Define a collection of sets

D = {{x : Majority(h1(x), h2(x), h3(x)) 6= h0(x)} : h1, h2, h3 ∈ C, h0 ∈ H}.

Since each set {x : Majority(h1(x), h2(x), h3(x)) 6= h0(x)} ∈ D is determined by the classi-
fiers h1, h2, h3 ∈ C and h0 ∈ H, a theorem of Vidyasagar (2003, Theorem 4.5) implies that
the VC dimension of D is less than 8 log2(4e)d.

7 Denote by dD = 8 log2(4e)d.
Next, a theorem of Vapnik (1982, Theorem 6.8), along with the fact that

√
1 + a ≤ 1+

√
a

for any a ≥ 0, implies that, with probability at least 1− δ/2, every D ∈ D satisfies

P(D) ≤ P̂X′
1:u(P)(D) +

4

u

(

dDLog

(

2eu

dD

)

+ Log

(

24

δ

))

+

√

P̂X′
1:u(P)(D)

4

u

(

dDLog

(

2eu

dD

)

+ Log

(

24

δ

))

.

In particular, for a sufficiently large choice of the constant c̃1, combining the above inequality
with the constraint (13) on u implies (see e.g., Vidyasagar, 2003, Corollary 4.1)

P(D) ≤ P̂X′
1:u(P)(D) +

γ2

16(ν + γ)
+

√

P̂X′
1:u(P)(D)

γ2

16(ν + γ)
. (14)

Additionally, a result of Bousquet, Boucheron, and Lugosi (2004, Theorem 7), together
with the VC-Sauer lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972), implies that,
with probability at least 1− δ/2, every D ∈ D satisfies

P̂X′
1:u(P)(D) ≤ P(D) + 2

√

P̂X′
1:u(P)(D)

1

u

(

dDLog

(

2em

dD

)

+ Log

(

8

δ

))

.

Furthermore, noting that the above is a quadratic inequality in
√

P̂X′
1:u(P)(D), solving this

inequality (and again using the fact that
√
1 + a ≤ 1 +

√
a for a ≥ 0) yields that, on the

above event,

P̂X′
1:u(P)(D) ≤ P(D) +

4

u

(

dDLog

(

2em

dD

)

+ Log

(

8

δ

))

+

√

P(D)
4

u

(

dDLog

(

2em

dD

)

+ Log

(

8

δ

))

.

As above, for a sufficiently large choice of the constant c̃1, combining the above inequality
with the constraint (13) on u implies

P̂X′
1:u(P)(D) ≤ P(D) +

γ2

16(ν + γ)
+

√

P(D)
γ2

16(ν + γ)
. (15)

7. In the terminology introduced above, the VC dimension of the collection D of sets is defined as the VC
dimension of the corresponding set of classifiers {x 7→ 21D(x)− 1 : D ∈ D}.
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By the union bound, with probability at least 1 − δ, every D ∈ D satisfies both (14)
and (15). In particular, fix any h1, h2, h3 ∈ C for which ∃h′ ∈ H with P(x : h′(x) 6=
Majority(h1(x), h2(x), h3(x))) ≤ ν, and fix any such h′ ∈ H. Denote by hMaj(x) =

Majority(h1(x), h2(x), h3(x)) (for all x ∈ X ), and let ĥ = argminh∈H P̂X′
1:u(P)(x : h(x) 6=

hMaj(x)). In particular, we have

P̂X′
1:u(P)

(

x : ĥ(x) 6= hMaj(x)
)

≤ P̂X′
1:u(P)

(

x : h′(x) 6= hMaj(x)
)

.

Thus, on the above event, (14) implies

P
(

x : ĥ(x) 6= hMaj(x)
)

≤ P̂X′
1:u(P)

(

x : ĥ(x) 6= hMaj(x)
)

+
γ2

16(ν + γ)
+

√

P̂X′
1:u(P)

(

x : ĥ(x) 6= hMaj(x)
) γ2

16(ν + γ)

≤ P̂X′
1:u(P)

(

x :h′(x) 6= hMaj(x)
)

+
γ2

16(ν + γ)
+

√

P̂X′
1:u(P)(x :h

′(x) 6= hMaj(x))
γ2

16(ν + γ)
,

while (15), and the fact that P(x : h′(x) 6= hMaj(x)) ≤ ν, imply this last line is at most

P
(

x : h′(x) 6= hMaj(x)
)

+
γ2

16(ν + γ)
+

√

ν
γ2

16(ν + γ)
+

γ2

16(ν + γ)

+

√

√

√

√

(

ν +
γ2

16(ν + γ)
+

√

ν
γ2

16(ν + γ)

)

γ2

16(ν + γ)

≤ P
(

x : h′(x) 6= hMaj(x)
)

+ γ.

Since this holds for every h′ ∈ H with P(x : h′(x) 6= hMaj(x)) ≤ ν, we have that as long as
some such h′ ∈ H exists, on the above event,

P
(

x : ĥ(x) 6= hMaj(x)
)

≤ inf
h′∈H:

P(x:h′(x)6=hMaj(x))≤ν

P
(

x : h′(x) 6= hMaj(x)
)

+ γ

= inf
h∈H

P (x : h(x) 6= hMaj(x)) + γ.

With this lemma in hand, we have the following result, which indicates that the semi-

supervised learning algorithm Â
(δ/2)
U can indeed be used in place of A

(δ)
P to achieve the

optimal distribution-free sample complexity (for the number of labeled data) without any
direct dependence on the distribution P, when given access to a pool of unlabeled data
X
′
1:u(P).

Theorem 6 There is a finite numerical constant c̃2 ≥ 1 and a N-valued function MSS(ε, δ)
with

MSS(ε, δ) = O

(

1

ε

(

d+ Log

(

1

δ

)))

(16)
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such that, for any probability measure P over X , any f⋆ ∈ C, any ε, δ ∈ (0, 1), any integer
m ≥ MSS(ε, δ), and any integer

u ≥ c̃2m
dLog

(

m
d

)

+ Log
(

24
δ

)

d+ Log
(

24
δ

) , (17)

with probability at least 1 − δ, the classifier ĥ = Â
(δ/2)
X′
1:u(P)

((X1:m(P), f⋆(X1:m(P)))) satisfies

erP(ĥ; f
⋆) ≤ ε.

In particular, Theorem 6 immediately implies the following corollary.

Corollary 7 There are N-valued functions MSS(ε, δ) and USS(ε, δ) with

MSS(ε, δ) = O

(

1

ε

(

d+ Log

(

1

δ

)))

and

USS(ε, δ) = O

(

1

ε

(

dLog

(

1

ε

)

+ Log

(

1

δ

)))

(18)

such that, for any probability measure P over X , any f⋆ ∈ C, and any ε, δ ∈ (0, 1),
taking m = MSS(ε, δ) and u = USS(ε, δ), with probability at least 1 − δ, the classifier

ĥ = Â
(δ/2)
X′
1:u(P)

((X1:m(P), f⋆(X1:m(P)))) satisfies erP(ĥ; f
⋆) ≤ ε.

Proof Let MSS(ε, δ) be as in Theorem 6, and let USS(ε, δ) equal the right hand side of
(17) (rounded up to an integer) for m = MSS(ε, δ). Then note that Lemma 8 and some
simple algebra reveal that USS(ε, δ) satisfies (18). Finally, since choosing m and u with
m = MSS(ε, δ) and u = USS(ε, δ) satisfies the constraints of Theorem 6, the conclusion that

P

(

erP(ĥ; f
⋆) ≤ ε

)

≥ 1− δ follows from the theorem.

We now present the proof of Theorem 6.

Proof of Theorem 6 We first note that, for any P, the algorithm A
(δ)
P is technically

an entire family of algorithms, distinguished by the choices of c0 and γ(·, ·) (subject to the
stated constraints), how they select the classifier ĥ in Step 1, the classifier ĥ3 in Step 3, and
the classifier ĥ in Step 4. Each of these may have several options to choose from. However,
regardless of how these choices are made (based on the input set S and parameter δ for the
given call, the distribution P, and any internal independent randomness), the analysis in
the proof of Theorem 2, and the conclusion of Theorem 2 itself, remain valid.

Now consider a special subfamily of these algorithms A
(δ)
P . Specifically, let γ̃(m, δ) =

1
3(m+1)

(

d+ ln
(

12
δ

))

, for m ∈ N and δ ∈ (0, 1), and for any sequence U ∈ X u and δ ∈ (0, 1),

let Ã
(δ)
P,U denote an instantiation of A

(δ)
P defined as follows.
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Algorithm: Ã
(δ)
P,U(S)

0. If |S| ≤ c0(d+ ln(12/δ))
1. Return any ĥ ∈ C[S]
2. Let S1 denote the first ⌊|S|/2⌋ elements of S, S2 the remaining ⌈|S|/2⌉ elements

3. Let ĥ1 = Ã
(δ/6)
P,U (S1), ĥ2 = Ã

(δ/6)
P,U (S2), and ĥ3 is an arbitrary element of C[S]

4. Let ĥ′ = argminh∈C[S] P̂U (x : h(x) 6= Majority(ĥ1(x), ĥ2(x), ĥ3(x)))

and return ĥ = ĥ′ if ĥ′ ∈ argmin
h∈C[S]

γ̃(|S|,δ)P(x : h(x) 6= Majority(ĥ1(x), ĥ2(x), ĥ3(x)))

and otherwise return any
ĥ ∈ argmin

h∈C[S]

γ̃(|S|,δ)P(x : h(x) 6= Majority(ĥ1(x), ĥ2(x), ĥ3(x)))

In particular, note that Ã
(δ)
P,U(S) uses valid choices of ĥ in Steps 1 and 4, and ĥ3 in Step

3, according to the definition of A
(δ)
P (S), so that Ã

(δ)
P,U is indeed a member of the family of

A
(δ)
P algorithms (and hence, the analysis in the proof of Theorem 2 applies to it).

For any finite sequence U in X , the semi-supervised algorithm Â
(δ)
U also describes an

entire family of algorithms. In this case, the choices of c0, ĥ in Step 1, and ĥ3 in Step 3

are subject to the same criteria as in A
(δ)
P , but the choice of ĥ in Step 4 is subject to a

different constraint. Let us fix any particular instantiation of these choices, so that for any

given U , Â(δ)
U is a particular algorithm in this family. For any P, let us further consider the

instantiation of Ã
(δ)
P,U(S) which makes these choices in the same way: that is, the choice of

c0, the choice of ĥ in Step 1, the choice of ĥ3 in Step 3, and the choice of ĥ′ in Step 4, are
each identical to the respective choices of c0, ĥ in Step 1, ĥ3 in Step 3, and ĥ in Step 4, by

Â
(δ)
U (S), at the root level and also in every recursive call, whenever these respective steps

are reached under otherwise identical conditions (so, for instance, ĥ′ in Ã
(δ)
P,U(S) would be

the same as ĥ in Â
(δ)
U (S) in Step 4 as long as ĥ1,ĥ2,ĥ3 from the previous step are the same

in Ã
(δ)
P,U(S) as in Â

(δ)
U (S)). In particular, note that if

ĥ′ ∈ argmin
h∈C[S′]

γ̃(|S′|,δ′)P(x : h(x) 6= Majority(ĥ1(x), ĥ2(x), ĥ3(x))) (19)

for every S′ ⊆ S and δ′ ≤ δ for which Ã
(δ′)
P,U(S

′) is called at some point in the execution of

Ã
(δ)
P,U(S) (including the root call), then we have Ã

(δ)
P,U(S) = Â

(δ)
U (S).

Next, we note that the proof of Theorem 2 in fact establishes more than stated in the
theorem. Specifically, let us fix a probability measure P over X and an f⋆ ∈ C (both arbi-
trary). Then, for any m ∈ N and δ ∈ (0, 1), from (9) and (10) and the principle of induction
(with base case as described in the proof), the proof establishes that, on an event H̃(m, δ)

of probability at least 1 − δ, for every call to A
(δ′)
P (S′) (with S′ ⊆ (X1:m(P), f⋆(X1:m(P)))

and δ′ ≤ δ) appearing in the execution of A
(δ)
P ((X1:m(P), f⋆(X1:m(P)))) (including the root

call and recursive calls), we have that the classifier hS′,δ′ = A
(δ′)
P (S′) satisfies

erP(hS′,δ′ ; f
⋆) ≤ 1

|S′|+ 1

(

358d + 97 ln

(

12

δ′

))

, (20)
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and if the call is also non-terminal (i.e., |S′| > c0(d + ln(12/δ′))), then the classifier

ĥMaj(x) = Majority(ĥ1(x), ĥ2(x), ĥ3(x)) (for ĥ1,ĥ2,ĥ3 in Step 3 of A
(δ′)
P (S′)) satisfies

erP(ĥMaj; f
⋆) ≤ 12

⌊|S′|/2⌋

(

d ln (358e + 97e ln(6) + 97e) + 2 ln

(

12

δ′

))

≤ 25

|S′|+ 1

(

8d+ 2 ln

(

12

δ′

))

. (21)

In particular, this is the case for Ã
(δ)
P,U((X1:m(P), f⋆(X1:m(P)))), where the event H̃(m, δ)

now depends on the particular sequence U . By the law of total probability (to inte-
grate out this dependence), for any u ∈ N, there is an event H̃ ′(m,u, δ) of probability

at least 1− δ, on which (20) holds for the classifier hS′,δ′ = Ã
(δ′)
P,X′

1:u(P)
(S′) for every call to

Ã
(δ′)
P,X′

1:u(P)(S
′) (with S′ ⊆ (X1:m(P), f⋆(X1:m(P)))) and δ′ ≤ δ) appearing in the execution

of Ã
(δ)
P,X′

1:u(P)((X1:m(P), f⋆(X1:m(P)))), and (21) holds for every non-terminal such call (for

ĥ1,ĥ2,ĥ3 as in Step 3 of Ã
(δ′)
P,X′

1:u(P)
(S′)).

In particular, this implies that, for any m,u ∈ N with

m ≥
⌊

1

ε

(

358d + 97 ln

(

24

δ

))⌋

, (22)

on the event H̃ ′(m,u, δ/2), the classifier h̃u,m = Ã
(δ/2)
P,X′

1:u(P)
((X1:m(P), f⋆(X1:m(P)))) satisfies

erP(h̃u,m; f⋆) ≤ ε. Take MSS(ε, δ) equal to the right hand side of (22), which one can easily
verify satisfies the requirement (16).

Now let ĥu,m = Â
(δ/2)
X′
1:u(P)((X1:m(P), f⋆(X1:m(P)))). By the union bound, we have that

P

(

erP(ĥu,m; f⋆) > ε
)

≤ P

(

erP(ĥu,m; f⋆) > ε and H̃ ′(m,u, δ/2)
)

+ 1− P

(

H̃ ′(m,u, δ/2)
)

≤ P

(

erP(h̃u,m; f⋆) > ε and h̃u,m = ĥu,m and H̃ ′(m,u, δ/2)
)

+ P

(

erP(ĥu,m; f⋆) > ε and h̃u,m 6= ĥu,m and H̃ ′(m,u, δ/2)
)

+ δ/2

≤ P

(

erP(h̃u,m; f⋆) > ε and H̃ ′(m,u, δ/2)
)

+ P

(

h̃u,m 6= ĥu,m and H̃ ′(m,u, δ/2)
)

+ δ/2

= P

(

h̃u,m 6= ĥu,m and H̃ ′(m,u, δ/2)
)

+ δ/2. (23)

Thus, it suffices to prove that, for an appropriate choice of c̃2, for a value of u as in (17),
there is an event H̃ ′′(m,u, δ/2) of probability at least 1− δ/2, such that on H̃ ′′(m,u, δ/2)∩
H̃ ′(m,u, δ/2), h̃u,m = ĥu,m.

We will prove this by induction. Define c̃2 = 4808c̃1, and fix a value of u ∈ N satisfying

(17). As a base case, any call of Ã
(δ′)
P,X′

1:u(P)(S
′) with |S′| ≤ c0(d + ln(12/δ′)) trivially has

Ã
(δ′)
P,X′

1:u(P)
(S′) = Â

(δ′)
X′
1:u(P)

(S′), since both algorithms return immediately in Step 1 (which is

assumed to be identically executed in both algorithms), without any executions of Step 4.
In particular, if m ≤ c0(d+ ln(24/δ)), then this trivially completes the proof. Now for the
nontrivial case, suppose m > c0(d+ ln(24/δ)).
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Now take as an inductive hypothesis that for some S′ ⊆ (X1:m(P), f⋆(X1:m(P))) and

δ′ ≤ δ/2 with |S′| > c0(d+ln(12/δ′)), Ã
(δ′)
P,X′

1:u(P)(S
′) is called at some point in the execution

of Ã
(δ/2)
P,X′

1:u(P)((X1:m(P), f⋆(X1:m(P)))) (either the root call itself, or as a recursive call), and

for Si and ĥi = Ã
(δ′/2)
P,X′

1:u(P)
(Si) (for each i ∈ {1, 2}) as in the definition of Ã

(δ′)
P,X′

1:u(P)
(S′),

there are events H̃ ′′′
i of probability at least 1 − (δ′/2)2 (for each i ∈ {1, 2}), such that for

each i ∈ {1, 2}, on the event H̃ ′′′
i ∩ H̃ ′(m,u, δ/2), we have Â

(δ′/2)
X′
1:u(P)(Si) = ĥi.

Our objective in the inductive step is to prove that there is an event H̃ ′′′
0 of probability

at least 1−(δ′)2 such that, on H̃ ′′′
0 ∩H̃ ′(m,u, δ/2), (19) is satisfied for this S′ and δ′. Denote

ν̃(|S′|, δ′) = 25
|S′|+1

(

8d+ 2 ln
(

12
δ′

))

. Based on this definition, and the definition of γ̃(|S′|, δ′),
along with the facts that e7(d+ln(12/δ′)) < |S′| ≤ m and 0 < δ′ ≤ δ/2, some simple algebra
reveals that

c̃1(ν̃(|S′|, δ′) + γ̃(|S′|, δ′))
γ̃(|S′|, δ′)2

(

dLog

(

1

γ̃(|S′|, δ′)

)

+ Log

(

2

(δ′)2

))

≤ (3 · 25 · 8 + 1)c̃1
1

γ̃(|S′|, δ′)

(

dLog

(

1

γ̃(|S′|, δ′)

)

+ Log

(

2

(δ′)2

))

≤ 3(3 · 25 · 8 + 1)c̃1(|S′|+ 1)
dLog

(

3(|S′|+1)
d

)

+ Log
(

2
(δ′)2

)

d+ Log
(

12
δ′

)

≤ 8(3 · 25 · 8 + 1)c̃1|S′|
dLog

(

|S′|
d

)

+ Log
(

12
δ′

)

d+ Log
(

12
δ′

)

≤ c̃2m
dLog

(

m
d

)

+ Log
(

24
δ

)

d+ Log
(

24
δ

) .

Therefore, for u satisfying (17), an application of Lemma 5 implies that there is an event
G̃ of probability at least 1− (δ′)2/2, on which, if ∃h′ ∈ C[S′] with P(x : h′(x) 6= ĥMaj(x)) ≤
ν̃(|S′|, δ′), then

P(x : ĥ′(x) 6= ĥMaj(x)) ≤ inf
h∈C[S′]

P(x : h(x) 6= ĥMaj(x)) + γ̃(|S′|, δ′).

That is, (19) is satisfied. In particular, note that since f⋆ ∈ C[S′], on the event H̃ ′(m,u, δ/2),
(21) implies that P(x : f⋆(x) 6= ĥMaj(x)) ≤ ν̃(|S′|, δ′), so that taking h′ = f⋆ suffices.
This means that on the event G̃ ∩ H̃ ′′′

1 ∩ H̃ ′′′
2 ∩ H̃ ′(m,u, δ/2), (19) is satisfied, so that

Â
(δ′)
X′
1:u(P)

(S′) = Ã
(δ′)
P,X′

1:u(P)
(S′). Defining H̃ ′′′

0 = G̃∩ H̃ ′′′
1 ∩ H̃ ′′′

2 , and noting that, by the union

bound, this event has probability at least 1− (δ′)2, this extends the inductive hypothesis.

By the principle of induction, we have established that there is an event H̃ ′′(m,u, δ/2)
of probability at least 1 − (δ/2)2 ≥ 1 − δ/2 such that, on H̃ ′(m,u, δ/2) ∩ H̃ ′′(m,u, δ/2),

h̃u,m = ĥu,m. Together with (23), this implies that P
(

erP(ĥu,m; f⋆) > ε
)

≤ δ, which com-

pletes the proof.
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6. Closing Thoughts: Toward an Optimal Distribution-Independent

Learning Algorithm

At this time, proving that the sample complexity of distribution-independent (and strictly
supervised) PAC learning is Θ

(

1
ε

(

d+ Log
(

1
δ

)))

remains an open problem. In light of
the present work, one natural route toward a possible solution would be to attempt to
reduce the number of samples required to perform the projection step (Step 4) in the

semi-supervised algorithm Â
(δ/2)
U (S) to a total of O

(

1
ε

(

d+ Log
(

1
δ

)))

, when we also have

|S| = O
(

1
ε

(

d+ Log
(

1
δ

)))

, while preserving the fact that it instantiates Step 4 of A
(δ/2)
P (S)

(with probability at least 1 − δ/2). In this case, we could simply use labeled samples to
perform this step, thus obtaining a distribution-independent supervised learning algorithm
achieving sample complexity O

(

1
ε

(

d+ Log
(

1
δ

)))

. At this time, it is unclear whether this
number of samples suffices to supply the required guarantee in this projection step. This is
closely related to a problem studied by Ben-David and Ben-David (2011), concerning the
sample complexity of finding a classifier h in a given set H, with P(x : h(x) 6= f(x)) ≤
infh′∈H P(x : h′(x) 6= f(x)) + γ, for a known classifer f not in H. As revealed by the proof
of Theorem 6, our projection step can be viewed as a special case of a restriction of this
problem, in which f is constrained to be within distance O(γ) of H = C[S]. That said, it is
conceivable that the particular details of our problem (e.g., f being a majority vote of three
classifiers from C) offer considerable advantages over the general case, which may further
reduce the number of samples sufficient for this projection.

It is not clear (to the author) at this time whether the sample complexity guarantee

from Theorem 2 would remain valid if Step 4 of A
(δ)
P were to instead simply return the

majority classifier x 7→ Majority(ĥ1(x), ĥ2(x), ĥ3(x)) (i.e., without projecting to C[S]). This

modification would remove all direct dependence on P from A
(δ)
P . That algorithm appears to

have interesting behavior on several example scenarios, but if a general analysis is possible,
it seems to require additional insights beyond the conditional error analysis used here.

More broadly, even aside from considering modifications of the algorithm proposed
above, Theorem 2 would establish optimal sample complexity bounds for distribution-
independent PAC learning, given the validity of another open conjecture in the learning
theory literature. Specifically, Ben-David, Lu, and Pál (2008) have conjectured that the
sample complexity achieved by any distribution-dependent learning algorithm is always at
most a constant factor smaller than the sample complexity achieved by some corresponding
distribution-independent learning algorithm; that conjecture even claims this is true when
the sample complexity itself is allowed to depend on the data distribution. If correct, this
would be a surprisingly strong (and beautiful) result. If we interpret the conjecture to
mean that the constant factor is invariant to the choice of concept space, then this general
conjecture also implies a much weaker one:8

8. This conjecture has been investigated to a small extent in the literature. For instance, in the case of
threshold classifiers, an analysis of Ben-David, Lu, and Pál (2008) indicates that the constant factor
difference between optimal sample complexities for distribution-independent vs distribution-dependent
learning is asymptotically at most 2, and have conjectured that this is indeed the correct value. For
this same concept space, Helmbold and Long (2012) have argued that (in the closely-related prediction

model of learning) this constant factor difference is at least 6
5
, implying that there actually is a slight

advantage to allowing distribution-dependence in the learning algorithm.
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The worst-case (over both the target and distribution) sample complexity achievable by any
distribution-dependent PAC learning algorithm is at most a numerical constant factor
smaller than the best worst-case sample complexity achievable by distribution-independent
PAC learning algorithms.

If this weaker conjecture is valid, then Theorem 2 (together with existing lower bounds)
would also establish a precise expression for the sample complexity of distribution-independent
PAC learning (up to a constant factor). Indeed, it follows from Corollary 3 that this conjec-
ture is in fact equivalent to the well-known conjecture that the optimal sample complexity
of distribution-independent PAC learning is Θ

(

1
ε

(

d+ Log
(

1
δ

)))

.

Appendix A. A Technical Lemma

The following basic lemma is useful in the proof of Theorem 2.9

Lemma 8 For any a, b, c1 ∈ [1,∞) and c2 ∈ [0,∞),

a ln

(

c1

(

c2 +
b

a

))

≤ a ln (c1(c2 + e)) +
1

e
b.

Proof If b
a ≤ e, then monotonicity of ln(·) implies

a ln

(

c1

(

c2 +
b

a

))

≤ a ln(c1(c2 + e)),

which is clearly no greater than a ln(c1(c2 + e)) + 1
eb.

On the other hand, if b
a > e, then

a ln

(

c1

(

c2 +
b

a

))

≤ a ln

(

c1 max{c2, 2}
b

a

)

= a ln (c1 max{c2, 2}) + a ln

(

b

a

)

.

The first term in the rightmost expression is at most a ln(c1(c2+2)) ≤ a ln(c1(c2+ e)). The

second term in the rightmost expression can be rewritten as b ln(b/a)b/a . Since x 7→ ln(x)/x is

nonincreasing on (e,∞), in the case b
a > e, this is at most 1

eb. Together, we have that

a ln

(

c1

(

c2 +
b

a

))

≤ a ln(c1(c2 + e)) +
1

e
b

in this case as well.
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