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Abstract

We study a special case of the problem of
statistical learning without the i.i.d. assump-
tion. Specifically, we suppose a learning
method is presented with a sequence of data
points, and required to make a prediction
(e.g., a classification) for each one, and can
then observe the loss incurred by this pre-
diction. We go beyond traditional analyses,
which have focused on stationary mixing pro-
cesses or nonstationary product processes, by
combining these two relaxations to allow non-
stationary mixing processes. We are particu-
larly interested in the case of β-mixing pro-
cesses, with the sum of changes in marginal
distributions growing sublinearly in the num-
ber of samples. Under these conditions, we
propose a learning method, and establish
that for bounded VC subgraph classes, the
cumulative excess risk grows sublinearly in
the number of predictions, at a quantified
rate.

1 Introduction

Our setting is that of stream-based prediction. At each
time t, we are given access to data points from times
1 through t− 1, and are required to produce a predic-
tor ft, which is then evaluated on a new data point at
time t. We study this in the general learning setting

of (Vapnik, 1982, 1998), which represents the learn-
ing objective as an abstract optimization problem. As
an example, in the special case of classification, given
access to pairs (x1, y1), . . . , (xt−1, yt−1), we would be
tasked with producing a function mapping an observed
point xt to a classification ŷt, and we would be eval-
uated on whether ŷt 6= yt (called a mistake). We are

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

then interested in characterizing the rate of growth of
the cumulative number of mistakes, as we repeat this
for increasing values of t.

To study this problem, we suppose the sequence of
observations are stochastic, subject to some restric-
tions on their distribution. Several such restrictions
are possible. For instance, the most-common assump-
tion used in the vast majority of the statistical learning
literature is that the data are independent and iden-
tically distributed (i.i.d.). However, some efforts to
relax this assumption have also been explored. There
are essentially two main threads of work toward re-
laxing this assumption: relaxing the independence as-
sumption while maintaining the assumption of identi-
cal distributions (or stationarity), or relaxing the as-
sumption of identical distributions while maintaining
the independence assumption. In the present work,
we are interested in relaxing these assumptions jointly.
Before getting into the details, let us first briefly review
these two threads of the literature.

Most of the literature on relaxations of the indepen-
dence assumption focuses on stationary mixing pro-
cesses. At the extreme of this branch, the work of
(Adams and Nobel, 2010) reveals that any VC class
admits a uniform law of large numbers under station-
ary ergodic processes. In particular, this implies that
the method of empirical risk minimization approaches
excess risk zero in the limit. However, one cannot es-
tablish rates of convergence under such general con-
ditions as ergodicity. To establish such rates, other
works have therefore introduced stronger conditions,
such as the β-mixing condition. Specifically, (Yu, 1994;
Karandikar and Vidyasagar, 2002) have proven asymp-
totic rates of uniform convergence for VC classes under
stationary β-mixing processes. One implication of this
result is an asymptotic rate of convergence for the ex-
cess risk of empirical risk minimization. Other works
have established rates of convergence for the excess
risk of empirical risk minimization and other learning
methods, under related mixing conditions, including
α-mixing (Vidyasagar, 2003), η-mixing (Kontorovich,
2007), and φ-mixing (Vidyasagar, 2003), all under the
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stationarity assumption.

The other primary direction in the study of the risk
of learning methods under relaxations of the i.i.d.
assumption preserves the independence assumption,
while allowing the marginal distributions to drift over
time. This thread in the literature has focused on the
specific setting of binary classification. Specifically,
(Long, 1999; Helmbold and Long, 1991, 1994; Barve
and Long, 1996, 1997; Crammer, Mansour, Even-Dar,
and Vaughan, 2010) study a setting in which the
marginal distribution of the data point at time t has
total variation distance from that of the data point
at time t + 1 at most a given upper bound, called
the drift rate (see also related work by (Bartlett, 1992;
Freund and Mansour, 1997; Bartlett, Ben-David, and
Kulkarni, 2000; Yang, 2011; Mohri and Muñoz Medina,
2012)). The data points are still assumed to be inde-
pendent. The recent works of (Hanneke, Kanade, and
Yang, 2015; Mohri and Muñoz Medina, 2012) further
explore this problem (in a formulation more-closely
paralleling that studied here). In this setting, the
learning method produces a sequence of predictors
(e.g., classifiers), where the method for choosing the
predictor at time t may depend on all of the data up
to time t − 1. The results in these works are express-
ible as bounds on the risk at each time t (or sometimes
averaged over time), as a function of t and the rates of
drift of the marginal distributions.

The paper of (Mohri and Muñoz Medina, 2012) also
studies a refinement of the notion of “drift” compared
to the earlier works, such as (Barve and Long, 1996,
1997). Specifically, rather than measuring the differ-
ence between the next and previous distributions by
the total variation distance, they instead use a notion
of “discrepancy” that depends directly on the function
class being used for learning. This discrepancy is some-
times significantly smaller than the total variation dis-
tance, yet plays an analogous role in the bounds of
(Mohri and Muñoz Medina, 2012) as the total variation
distance plays in the bounds of (Helmbold and Long,
1994; Barve and Long, 1997). To allow for this re-
fined notion of drift, our arguments below are phrased
generally enough that they can be applied with either
notion of drift (discrepancy or total variation).

On the subject of relaxing the independence assump-
tion to allow mixing processes with drift, (Agarwal
and Duchi, 2013) made some initial steps by study-
ing the performance of certain learning methods un-
der mixing processes, which may drift over time. How-
ever, among other differences, their analysis was re-
stricted to sequences of distributions that are conver-

gent, a requirement much stronger than our drift con-
dition below. In recent work, (Kuznetsov and Mohri,
2014) also discusses the problem of learning from non-

stationary mixing processes. They derive interesting
results bounding the risk at some future time in terms
of the empirical risk on all observed data, with clear
implications for the performance of methods such as
empirical risk minimization. The nature of the results
in that work are somewhat different from our results
below. However, the spirit of the analysis is similar in
many places, and one can conceivably convert some of
those results into a more-closely related form with a
bit of additional effort.

One significant point of divergence between the present
work and that of (Kuznetsov and Mohri, 2014), and all
of the above works on product processes (aside from
certain special cases discussed by (Hanneke, Kanade,
and Yang, 2015)), is that in the general case, these
works require access to the sequence of magnitudes of
drift of the distribution, or a constant upper bound
thereon. The sequence of drift magnitudes is a sub-
stantial number of variables to assume we have ac-
cess to (linear in the number of data points), and re-
lying only on a constant upper bound precludes the
possibility of sublinear growth of the cumulative ex-
cess risk (Helmbold and Long, 1994; Hanneke, Kanade,
and Yang, 2015). The notion of discrepancy studied
by (Mohri and Muñoz Medina, 2012; Kuznetsov and
Mohri, 2014) (see below) can sometimes be estimated
from data, but only under significant further restric-
tions on the process. In contrast, in the present work,
we merely assume an asymptotic bound on the rate of
growth of the cumulative amount of drift. Our learn-
ing method then depends only on the single parameter
that this asymptotic growth rate is described in terms
of, and we show that this is enough to achieve sub-
linear growth of the cumulative excess risk, without
needing access to the sequence of drift rates or addi-
tional restrictions on the process. We leave as future
work the question of whether it is possible to adapt to
the value of this parameter. For completeness, we also
briefly discuss a case where the drift rates are known,
in Section 3.

The present work studies learning under general non-
stationary processes, under a condition that allows us
to extend the ideas from the above-described litera-
ture on learning from product processes with slowly-
drifting marginal distributions. Specifically, we replace
the independence condition with a β-mixing condition.
In addition to this, we suppose that the sum of dis-
tances between marginal distributions at adjacent time
steps grows only sublinearly (note that this does not

require that the sequence of distributions be converg-
ing). Our objective is then to propose a prediction
strategy (for producing the ft function), and to char-
acterize the rate of growth of the cumulative excess
risk over time. The excess risks are calculated relative
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to the sequence of a priori optimal predictors among
functions in a given function class. In particular, for
any bounded VC subgraph class, we establish a rate of
growth of the cumulative excess risk that is sublinear

in the number of predictions made.

1.1 Definitions and Summary of Main Result

To formalize this setting, we adopt the abstract per-
spective of the general learning setting of (Vapnik,
1982, 1998). Specifically, fix a measurable space (Z,Z)
and a function class F of measurable functions f :
Z → [0, 1]. For instance, in the special case of clas-
sification, Z would be a set of (x, y) pairs, and F
would be a set of functions fh((x, y)) = 1[h(x) 6= y],
where h ranges over a set H of functions (known as
the hypothesis class); see (Koltchinskii, 2006; Shalev-
Shwartz, Shamir, Srebro, and Sridharan, 2010) for
many other examples. In the general learning setting,
the aim of a learning algorithm is to identify a func-
tion f ∈ F with a relatively small average value, where
the average is taken with respect to some unknown
probability measure on Z (as discussed in more detail
below). For instance, in the classification setting de-
scribed above, this average value corresponds to the
probability that h makes a “mistake” in predicting the
value of y from x.

For simplicity, to avoid the common measurability is-
sues arising in empirical process theory, we will sup-
pose F is such that the events involved in the proofs
below are all measurable (for instance, this is certainly
the case if F is countable; see (van der Vaart and
Wellner, 1996) for other sufficient conditions). Let
d denote the pseudo-dimension of F (Pollard, 1984,
1990; Haussler, 1992; Anthony and Bartlett, 1999):
that is, d is the largest k ∈ N ∪ {0} such that
∃(z1, w1), . . . , (zk, wk) ∈ Z × R with |{(1[f(z1) ≤
w1], . . . ,1[f(zk) ≤ wk]) : f ∈ F}| = 2k, or is ∞ if
no such largest k exists. Throughout this article, we
suppose 1 ≤ d < ∞ (so that F is a VC Subgraph
class).

We suppose there is a sequence of Z-valued random
variables Z1, Z2, . . ., called the data points, and for
each t ∈ N, we denote by Pt the marginal distribution
of the random variable Zt. Also, generally, for any ran-
dom variable X, we denote by PX the distribution of
X (i.e., PX(·) = P(X−1(·))). For any probability mea-
sures P,Q on a measurable space (Ω,B), we denote by
‖P − Q‖ = supA∈B P (A) − Q(A) the total variation
distance between P and Q. Additionally, for probabil-
ity measures P,Q on the measurable space (Z,Z), we
denote by

ρ(P,Q) = sup
f∈F

|EZ∼P [f(Z)]− EZ∼Q[f(Z)]| ,

a general notion of discrepancy introduced by (Man-
sour, Mohri, and Rostamizadeh, 2009; Mohri and
Muñoz Medina, 2012). We use ρ below to quantify
the magnitude of change in the marginal distribution
of Zt+1 compared to Zt. Note that, since every f ∈ F
is uniformly bounded in [0, 1], we clearly have

ρ(P,Q) ≤ ‖P −Q‖.
Indeed, readers more comfortable with the familiar to-
tal variation distance may feel free to replace ρ(P,Q)
with ‖P−Q‖ in all contexts below, and the results and
proofs will remain valid without any further modifica-
tions. However, one can construct scenarios in which
ρ(P,Q) provides a much smaller value, and generally
ρ(P,Q) appears to be more relevant to the learning
setting than is the total variation distance. For each
t ≥ 2, let ∆t ∈ [0, 1] be a value satisfying

ρ(Pt, Pt−1) ≤ ∆t. (1)

For completeness, also define ∆1 = 0.

To obtain nontrivial results, we are interested in re-
stricting the family of processes. Specifically, for our
main result below (Theorem 1), we suppose

T
∑

t=1

∆t = O(Tα), (2)

for a given value α ∈ [0, 1). Note that this does not re-
quire that the sequence of distributions be converging,
only that its average rate of change slows over time. A
simple example of a non-convergent sequence satisfy-
ing (2) with α = 1/2 is Pt as Bernoulli(

√
t− ⌊

√
t⌋).

We additionally adopt the standard definition of β-

mixing, defined as follows. Following (Bradley, 1983)
and (Yu, 1994), for each k ∈ N, define

βk =
1

2
sup







I
∑

i=1

J
∑

j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)| :

{Ai}i ∈ Πℓ, {Bj}j ∈ Π′
ℓ+k, ℓ ≥ 1







,

where Πℓ is defined as the set of σ({Z1, . . . , Zℓ})-
measurable finite partitions, and Π′

ℓ+k is defined as
the set of σ({Zℓ+k, Zℓ+k+1, . . .})-measurable finite par-
titions. Then we suppose

βk = O(k−r), (3)

for some r ∈ (0,∞).

Under the assumptions (2) and (3), we propose a learn-

ing method, specified as follows. Let f̂1 be arbitrary.
For each t ∈ N \ {1}, let

mt =
⌈

(t− 1)(1−α) 3+2r
3+3r

⌉
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and
kt =

⌈

(t− 1)(1−α) 1
1+r

⌉

and choose as a predictor at time t a function1

f̂t = argmin
f∈F

⌊mt/kt⌋
∑

s=1

f(Zt−skt
). (4)

For f̂t chosen in this way, we prove the following theo-
rem.

Theorem 1. If (2) and (3) are satisfied, then

T
∑

t=1

E

[

f̂t(Zt)
]

−
T
∑

t=1

inf
f∈F

E [f(Zt)] = O
(

T
3+(2+α)r

3+3r

)

.

In particular, note that the expression on the right
hand side grows sublinearly in T . To prove this the-
orem, we first provide two key lemmas from the liter-
ature, after which we present the proof of Theorem 1
below. Following this, in Section 3, we conclude the
paper by establishing finite-sample bounds, and other
specialized results, in the special case of product pro-
cesses; this effectively extends to the general learning
setting results established by (Barve and Long, 1996,
1997) for binary classification, while also expressing
the results in a more general form that allows for a
time-varying drift rate.

2 Proof of Theorem 1

The following lemma is a well-known result on β-
mixing processes, from (Volkonskii and Rozanov, 1959;
Eberlein, 1984) (see also Theorem 2.1 of (Vidyasagar,
2003) or Corollary 2.7 of (Yu, 1994)).

Lemma 1. For any t, n, k ∈ N,

∥

∥

∥

∥

P{Z(j−1)k+t}
n
j=1

−
(

n
×
j=1

P(j−1)k+t

)∥

∥

∥

∥

≤ (n− 1)βk.

Additionally, we use the following well-known result
(see e.g., (van der Vaart and Wellner, 1996), Theorems
2.14.1 and 2.6.7).

Lemma 2. There exists a universal constant c ∈
[1,∞) such that, for any independent Z-valued ran-

dom variables Z ′
1, . . . , Z

′
m,

E

[

sup
f∈F

∣

∣

∣

∣

∣

1

m

m
∑

t=1

(f(Z ′
t)− E[f(Z ′

t)])

∣

∣

∣

∣

∣

]

≤ c

√

d

m
.

1For simplicity, we suppose the minimum is actu-
ally achieved by some f ∈ F . To handle the general
case, all of the results continue to hold, with only mi-
nor technical changes to the proofs, if we instead choose

f̂t ∈ F with
∑⌊mt/kt⌋

s=1
f̂t(Zt−skt) sufficiently close to

inff∈F

∑⌊mt/kt⌋
s=1

f(Zt−skt).

While the proof of this result in (van der Vaart and
Wellner, 1996) discusses only i.i.d. random variables,
essentially the same proof in fact implies this result,
which only assumes independence. As this observation
is fairly well known, we do not include a separate proof
here.

With these lemmas in hand, we are ready to present
the proof of Theorem 1.

Proof of Theorem 1. Let Z ′
1, Z

′
2, . . . denote a sequence

of independent random variables, also independent
from {Zi}i∈N, and with each Z ′

i ∼ Pi. Fix any

t ∈ N \ {1}. Since f̂t depends only on Z1, . . . , Zt−kt
,

it follows immediately from the definition of βkt
(see

(Yu, 1994), Lemma 2.6) that

∥

∥

∥P(f̂t,Zt)
− P(f̂t,Z′

t)

∥

∥

∥ =
∥

∥

∥P(f̂t,Zt)
− Pf̂t

× PZt

∥

∥

∥ ≤ βkt
.

In particular, this implies

E

[

f̂t(Zt)
]

≤ E

[

f̂t(Z
′
t)
]

+ βkt
.

Additionally, since ρ(Pt−ikt
, Pt) ≤ ∑t−1

q=t−ikt
∆q+1 for

1 ≤ i ≤ ⌊mt/kt⌋, and every Z ′
j is independent of f̂t,

we have that

E

[

f̂t(Z
′
t)
]

= E

[

E

[

f̂t(Z
′
t)
∣

∣

∣
f̂t

]]

≤ E





1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

E

[

f̂t(Z
′
t−ikt

)
∣

∣

∣f̂t

]





+
1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1.

Furthermore,

E





1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

E

[

f̂t(Z
′
t−ikt

)
∣

∣

∣
f̂t

]





≤ E





1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

f̂t(Zt−ikt
)





+ E



sup
f∈F

∣

∣

∣

∣

∣

∣

1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

(

E[f(Z ′
t−ikt

)]−f(Zt−ikt
)
)

∣

∣

∣

∣

∣

∣



.

(5)

Now let us bound each term in (5) separately. First,
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we have that

E





1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

f̂t(Zt−ikt
)





= E



 inf
f∈F

1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

f(Zt−ikt
)





≤ inf
f∈F

1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

E [f(Zt−ikt
)]

≤ inf
f∈F

E[f(Zt)] +
1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1.

Next, Lemma 1 implies

E



sup
f∈F

∣

∣

∣

∣

∣

∣

1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

(

E[f(Z ′
t−ikt

)]− f(Zt−ikt
)
)

∣

∣

∣

∣

∣

∣





≤ E



sup
f∈F

∣

∣

∣

∣

∣

∣

1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

(

E[f(Z ′
t−ikt

)]−f(Z ′
t−ikt

)
)

∣

∣

∣

∣

∣

∣





+ (⌊mt/kt⌋ − 1)βkt
.

Furthermore, Lemma 2 implies

E



sup
f∈F

∣

∣

∣

∣

∣

∣

1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

(

E[f(Z ′
t−ikt

)]− f(Z ′
t−ikt

)
)

∣

∣

∣

∣

∣

∣





≤ c

√

d

⌊mt/kt⌋
.

Together, we have that (5) is at most

inf
f∈F

E[f(Zt)] +





1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1





+ c

√

d

⌊mt/kt⌋
+ (⌊mt/kt⌋ − 1)βkt

.

Altogether, we have established that

E

[

f̂t(Zt)
]

≤ inf
f∈F

E[f(Zt)]

+ 2





1

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1





+ c

√

d

⌊mt/kt⌋
+ ⌊mt/kt⌋βkt

. (6)

Therefore,

T
∑

t=1

E

[

f̂t(Zt)
]

−
T
∑

t=1

inf
f∈F

E [f(Zt)]

≤ 1 +





T
∑

t=2

2

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1





+

(

T
∑

t=2

c

√

d

⌊mt/kt⌋

)

+

(

T
∑

t=2

⌊mt/kt⌋βkt

)

. (7)

All that remains is to bound each of these three terms
on the right hand side of (7). The only term presenting
a challenge in this regard is the term involving the
∆q+1 values, and for that reason we leave this term for
last. For the other terms, first note that

T
∑

t=1

t−(1−α) r
3+3r = O

(

1 +

∫ T

1

t−(1−α) r
3+3r dt

)

= O
(

T
3+(2+α)r

3+3r

)

.

Thus, we have that

T
∑

t=2

c

√

d

⌊mt/kt⌋
= O

(

T
∑

t=1

t−(1−α) r
3+3r

)

= O
(

T
3+(2+α)r

3+3r

)

. (8)

Also, we have

T
∑

t=2

⌊mt/kt⌋βkt
= O

(

T
∑

t=2

mt/k
1+r
t

)

= O

(

T
∑

t=1

t−(1−α) r
3+3r

)

= O
(

T
3+(2+α)r

3+3r

)

. (9)

The remaining term,

T
∑

t=2

2

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1,

requires more work to bound. First note that

T
∑

t=2

2

⌊mt/kt⌋

⌊mt/kt⌋
∑

i=1

t−1
∑

q=t−ikt

∆q+1 ≤ 2

T
∑

t=2

t−1
∑

q=t−mt

∆q+1.

We will focus on bounding the right hand side. Now
note that every value of t ∈ N for which q ∈ {t −
mt, . . . , t− 1} satisfies

2q ≥ 2t− 2mt = 2t
(

1− mt

t

)

≥ 2t
(

1− 2(t− 1)(1−α) 3+2r
3+3r−1

)

= 2t
(

1− 2(t− 1)−
3α+2rα+r

3+3r

)

≥ 2t
(

1− 2q−
3α+2rα+r

3+3r

)

≥ 2t
(

1− 2q−
r

3+3r
)

.
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Denote qr =
⌈

4
3+3r

r

⌉

, and note that for any q ≥ qr

we have 2t
(

1− 2q−
r

3+3r
)

≥ t. Thus, for any q ≥ qr,
every t ∈ N with q ∈ {t − mt, . . . , t − 1} has t ≤ 2q,
so that (by monotonicity of mt) we also have q ∈ {t−
m2q, . . . , t−1}, or equivalently t ∈ {q+1, . . . , q+m2q}.
In particular, this means any such q has at most m2q

appearances of the quantity ∆q+1 in the summation
∑T

t=2

∑t−1
q=t−mt

∆q+1. Also, clearly the largest q with
∆q+1 appearing in this summation is q = T − 1. Addi-
tionally, since mt is sublinear in t, we have t−mt → ∞
as t → ∞, so that there is some finite t0 such that ev-
ery t > t0 has t − mt ≥ qr. Thus, every q < qr has
∆q+1 appearing at most t0 times in the summation
∑T

t=2

∑t−1
q=t−mt

∆q+1. Altogether, we have that

2

T
∑

t=2

t−1
∑

q=t−mt

∆q+1 ≤ 2t0

qr−1
∑

q=1

∆q+1 + 2

T−1
∑

q=qr

m2q∆q+1

= O

(

m2T

T
∑

q=1

∆q

)

= O
(

T (1−α) 3+2r
3+3r+α

)

= O
(

T
3+(2+α)r

3+3r

)

,

where we have used the assumption (2) on the ∆t se-
quence.

Plugging this bound into (7) along with (8) and (9),
we have established that

T
∑

t=1

E

[

f̂t(Zt)
]

−
T
∑

t=1

inf
f∈F

E [f(Zt)] = O
(

T
3+(2+α)r

3+3r

)

,

which completes the proof.

3 Product Processes

In this section, unlike above, we suppose the algorithm
has direct access to the ∆t sequence. Our objective is
then to derive more-explicit (non-asymptotic) bounds
under the assumption that {Zt}∞t=1 is a product pro-
cess. The results here are already known in the spe-
cial case of binary classification, in the case that ∆t is
bounded by a t-invariant constant for all t (Barve and
Long, 1997). Thus, this section represents a general-
ization of these classic results to the general learning
setting, and to general time-varying drift rates. That
said, we note that the results here would also readily
follow from the classic analysis of (Barve and Long,
1997) and the more-recent work of (Mohri and Muñoz
Medina, 2012), with only minor additional work to ap-
ply those results to a recent history of data points trail-
ing the prediction time t; there is nevertheless some
value in stating the results explicitly here, particularly
since they follow directly from our analysis above.

Throughout this section, for any functions f, g : A →
[0,∞), for any set A, we write f(a) . g(a) to express
the claim that there exists a numerical constant c ∈
(0,∞) such that f(a) ≤ cg(a) for all a ∈ A; this allows
us to express non-asymptotic bounds (in terms of T ,
d, and the ∆t sequence), without concerning ourselves
with precise numerical constant factors. For each t ∈
N \ {1}, define

m̃t = argmin
m∈{1,...,t−1}

(

t−1
∑

q=t−m

∆q+1 +

√

d

m

)

and

f̃t = argmin
f∈F

t−1
∑

s=t−m̃t

f(Zs).

For completeness, define f̃1 as an arbitrary element of
F .

Theorem 2. If {Zt}∞t=1 is a product process, then for

T ∈ N \ {1},

T
∑

t=1

E

[

f̃t(Zt)
]

−
T
∑

t=1

inf
f∈F

E[f(Zt)]

.

T
∑

t=2

min
m∈{1,...,t−1}

(

t−1
∑

q=t−m

∆q+1 +

√

d

m

)

.

Proof. We begin by noting that, in the proof of Theo-
rem 1, the argument leading to (7) in fact more gener-
ally holds for any β-mixing process {Zt}t∈N (regardless
of whether (2) and (3) are satisfied for the correspond-

ing ∆t and βk sequences), and for any sequence f̂t
defined as in (4), where the values mt, kt ∈ N can be
specified arbitrarily, subject to kt ≤ mt ≤ t − 1. In
particular, substituting kt = 1 and mt = m̃t, the corre-
sponding f̂t from (4) is precisely f̃t. Then since β1 = 0
for product processes, (7) implies

T
∑

t=1

E

[

f̃t(Zt)
]

−
T
∑

t=1

inf
f∈F

E [f(Zt)]

.

T
∑

t=2





t−1
∑

q=t−m̃t

∆q+1 +

√

d

m̃t





=

T
∑

t=2

min
m∈{1,...,t−1}

(

t−1
∑

q=t−m

∆q+1 +

√

d

m

)

.

It remains an interesting open problem to determine
whether the above guarantee is achievable by a learn-
ing rule that has no direct dependence on the ∆t val-
ues: that is, a method that is adaptive to variations
in the rates of drift. Resolution of this question seems
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an important step toward applicability of these ideas
in practice. Of course, as established in Theorem 1,
if we instead assume that the asymptotic bound (2)
holds, then it is possible to replace the direct depen-
dence on ∆t with a mere dependence on a single pa-
rameter α; however, the price for this is that the finite-
sample bound in Theorem 2 would be replaced by an
asymptotic guarantee. An alternative option is to sup-
pose the drift rates ∆t are bounded by a value γ, and
then provide an algorithm depending only on γ; this
coarse condition on ∆t precludes the possibility of a
sublinear cumulative excess risk guarantee, but it can
nonetheless be interesting to study the dependence of
the achieved excess risk on γ. This is the subject of
the next subsection.

3.1 Constant Drift Rate

In the context of binary classification, (Long, 1999;
Helmbold and Long, 1991, 1994; Barve and Long, 1996,
1997; Crammer, Mansour, Even-Dar, and Vaughan,
2010; Hanneke, Kanade, and Yang, 2015; Mohri and
Muñoz Medina, 2012) have derived bounds on the se-
quence of risks (or the number of mistakes) achieved by
various methods, under the assumptions that {Zt}∞t=1

is a product process, and that ∆t ≤ γ, for some fixed
constant γ ∈ (0, 1). Here we briefly note that some of
these results (and in particular, those of (Barve and
Long, 1997)) can be generalized to the general learn-
ing setting, where we find analogous results on the
average of the f̂t(Zt) function values. We note that a
similar type of result is also immediate from the anal-
ysis of (Mohri and Muñoz Medina, 2012) with minor
additional effort to convert to our sequential setting.

Let m̄ =
⌈

d1/3γ−2/3
⌉

. For each integer t > m̄, let

f̄t = argmin
f∈F

t−1
∑

s=t−m̄

f(Zs).

For completeness, for t ≤ m̄ define f̄t as an arbitrary
element of F .

Theorem 3. If {Zt}∞t=1 is a product process, then for

T > 1/γ,

T
∑

t=1

E
[

f̄t(Zt)
]

−
T
∑

t=1

inf
f∈F

E[f(Zt)] . (dγ)
1/3

T.

It is worth noting that the bound in Theorem 3 would
also hold for the predictor f̃t from Theorem 2; indeed,
this follows immediately from plugging in γ for the
values of ∆t, in which case f̃t itself is quite similar to
f̄t. However, as f̄t admits the above simplified explicit
form in this special case, we include a brief direct proof
of this result as follows.

Proof. As in the proof of Theorem 2, the proof is based
on the general validity of (6). In particular, taking
kt = 1 and mt = min{m̄, (t− 1)}, the corresponding

f̂t is equal f̄t for all t > m̄. Thus, (6) implies

T
∑

t=1

E
[

f̄t(Zt)
]

−
T
∑

t=1

inf
f∈F

E [f(Zt)]

. m̄+

T
∑

t=m̄+1

(

t−1
∑

q=t−m̄

∆q+1 +

√

d

m̄

)

≤ m̄+

T
∑

t=m̄+1

(

m̄γ + (dγ)
1/3
)

. d1/3γ−2/3+ (dγ)
1/3

T.

The proof is completed by noting that, for T > 1/γ,
we have (dγ)1/3T > d1/3γ−2/3, so that d1/3γ−2/3 +

(dγ)
1/3

T < 2(dγ)1/3T .

4 Discussion and Open Problems

There remains an interesting question of whether the
rate established in Theorem 1 is optimal. In the case of
stationary β-mixing processes, the best known result is

O
(

T
3+r
3+2r

)

(Karandikar and Vidyasagar, 2002). This

result can be recovered with our technique by setting

mt = t−1 and kt =
⌈

(t− 1)
3

3+2r

⌉

, noting that the term

in (7) depending on the ∆t values is equal 0 in the sta-
tionary case; indeed, to achieve this rate we required
only that ∆t = 0 for all t, which is a strictly weaker re-
quirement than stationarity. Stationary processes are
a special case of α = 0 in (2). However, the result
given in Theorem 1 for α = 0 obtains a somewhat

faster growth of O
(

T
3+2r
3+3r

)

. Since the general case of

α = 0 includes many nonstationary processes as well,
it is not clear whether Theorem 1 can be improved

to provide a rate O
(

T
3+r
3+2r

)

for general processes hav-

ing α = 0. If so, it would seem to require a differ-
ent approach to the analysis, since if we were to take

mt = t−1 and kt =
⌈

(t− 1)
3

3+2r

⌉

for a general process

with α = 0, the summation involving the ∆t sequence

in (7) might then potentially grow faster than T
3+r
3+2r .

Complementary to this question is the problem of es-
tablishing lower bounds on the minimax rates, which
seems to require development of novel techniques for
constructing nonstationary mixing processes for which
the learning problem is challenging.
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